(34.204.201.220) 您好!臺灣時間:2021/04/19 17:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:柯馬文
研究生(外文):Galicia Melvin
論文名稱:利用分散式電源之最佳配置及可靠度指標於舒緩變電所壅塞問題之操作策略探究
論文名稱(外文):Alleviations of Substation Congestions by Distributed Generations – An Optimal Location and Reliability Analysis
指導教授:劉承宗劉承宗引用關係
指導教授(外文):Cheng-Tsung Liu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機電力工程國際碩士學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:88
外文關鍵詞:distribution systemoptimal DG locationDistributed generationsystem reliabilitysubstation congestion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
With increased load demands from the customers, substation congestion problems have become inevitable to the utility companies. Instead of expanding related system installations to alleviate the short-term overloads on the facilities, feasibilities of integrating distributed generator (DG) units to defer the possible congestions are of much concern. This thesis presents an optimal location and reliability analyzing scheme for distribution system integrated with DG units, and provides the systematic guidance to utility companies for related operations. The methodology focuses on the substation capacity constraints and provides the optimal DG locations that can alleviate the congestion problem with highest reliability indices. The proposed analyzing scheme can supply valuable assistance to the utility companies and small independent power producers (IPP) for determining the installations and integrations of DG units to defer possible emerging substation expansions.
ABSTRACT i
TABLE OF CONTENTS ii
LIST OF FIGURES v
LIST OF TABLES vi
LIST OF SYMBOLS vii
1. INTRODUCTION 1
1.1 Background 1
1.2 Objectives 3
1.3 Literature review 4
1.4 Thesis outline 6
2. THE DISTRIBUTION SYSTEM 7
2.1 Basic concepts 7
2.2 Typical distribution systems 7
2.2.1 Radial distribution system 8
2.2.2 Meshed distribution system 9
2.3 The distribution system for investigation 11
2.3.1 Operational assumptions 12
2.3.2 Load and line parameters 13
2.3.3 Operational concerns 15
2.3.4 Power flow analysis for the healthy system 18
2.3.5 The substation congestion problem 22
3. DISTRIBUTED GENERATION 24
3.1 DGs for investigation 24
3.1.1 Photovoltaic generation 25
3.1.2 Wind power generation 27
3.1.3 Fuel cell unit 30
3.1.4 Battery energy storage system 32
3.2 DG impacts to the distribution system 33
3.2.1 Voltage deviation 34
3.2.2 Power loss reduction 34
3.2.3 Reliability enhancement 35
3.2.4 Congestion alleviation 36
3.3 DG installation concerns 36
3.3.1 For the utility company 37
3.3.2 For the independent power producer 38
4. OPTIMAL LOCATION FOR DG INSTALLATION 39
4.1 Problem formulation 39
4.1.1 Objective function 39
4.1.2 Operational constraints 41
4.2 Primal-Dual Interior Point Method 41
4.2.1 Searching algorithm 42
4.2.2 Implementation procedure 45
4.3 Optimal DG location 47
5. SCHEDULING FOR DG INTEGRATION 50
5.1 Reliability background 51
5.2 System reliability assessments 53
5.2.1 Reliability indices 55
5.2.2 System reliability without DG 57
5.2.3 System reliability with DG 60
5.3 System performance improvement with DG integration 65
5.3.1 Problem formulation 65
5.3.2 Reliability enhancement criteria 65
5.3.3 Congestion alleviation criteria 66
5.4 Scheduling guidance 67
5.4.1 Selection of DG 67
5.4.2 Realization implementation 68
6. CONCLUSIONS 72
REFERENCES 74
BIOGRAPHY 76

[1]S. A. Yin and C. N. Lu, “Distribution feeder scheduling considering variable load profile and outage costs,” IEEE Trans. Power Systems, vol. 24, pp. 652-660, May 2009.

[2]N. Jenkins, R. Allan, P. Crossley, D. Kirschen, and G. Strbac, Embedded Generation, 1st ed. IET Power and Energy Series 31, London: Institution of Engineering and Technology, UK, 2000, pp. 21-230.

[3]L. C. Leung, S. K. Khator, and J. C. Schnepp, “Planning substation capacity under the single-contingency scenario,” IEEE Trans. Power Systems, vol. 10, pp. 1442-1447, Aug. 1995.

[4]M. R. Gouvea, D. P. Duarte, J. C. R. Lopes, S. L. Caparroz, I. K. de Lima, A. Suprizzi, and L. C. Goular, “Distributed substations: An innovative low impact solution,” in Proc. 2004 IEEE/PES Trans. and Dist. Conf. and Expo., Latin America, pp. 863-868.

[5]A. A. Chowdhury, S. K. Agarwal, and D. O. Koval, “Reliability modeling of distributed generation in conventional distribution systems planning and analysis,” IEEE Trans. Industry Applications, vol. 39, pp. 1493-1498, Oct. 2003.

[6]M. Q. Lee, C. N. Lu, and H. S. Huang, “Reliability and cost analyses of electricity collection systems of a marine current farm - A Taiwanese case study,” Renewable and Sustainable Energy Reviews, vol. 13, pp. 2012-2021, Oct. 2009.

[7]H. Yamashita, “A globally convergent Primal-Dual Interior Point Method for constrained optimization,” Optimization Methods and Software, vol. 10, pp. 443-469, Oct. 1998.

[8]C. S. Chen, M. Y. Huang, and C. C. Chen, “Expansion planning of substation capacity by considering service reliability,” in Proc. 2004 IEEE Int. Conf. Power Sys. Tech., vol. 1, pp. 58-62.

[9]Y. Yuan, K. Qian, and C. Zhou, “The optimal location and penetration level of distributed generation,” in Proc. 2007 UPEC Int. Conf. Universities Power Engineering, pp. 917-923.

[10]X. Ding, J. Wu, and F. Zhao, “Optimal location and capacity of distributed generation based on scenario probability,” in Proc. 2009 IEEE Int. Conf. on Sustainable Power Gen. and Supply, pp. 1-5.

[11]I. Waseem, “Impacts of distributed generation on the residential distribution network operation,” M.A. Thesis, Virginia Polytechnic Institute and State University, Dec. 2008.
[12]M. H. Albadi and E. F. El-Saadany, “Wind turbines capacity factor modeling – a novel approach,” IEEE Trans. Power Systems, vol. 24, pp. 1637-1638, Aug. 2009.

[13]X. Huang, Z. Zhang, and J. Jiang, “Fuel cell technology for distributed generation: An overview,” in Proc. 2006 IEEE Int. Symposium on Industrial Electronics, vol. 2, pp. 1613-1618.

[14]T. Ohtaka, A. Uchida, and S. Iwamoto, “A voltage control strategy with NAS battery systems considering interconnection of distributed generations,” in Proc. 2004 IEEE Int. Conf. on Power Sys. Tech., vol. 1, pp. 226-231.

[15]A. A. Chowdhury and D. O. Koval, Power Distribution System Reliability Practical Methods and Applications, New Jersey: John Wiley & Sons, Inc., USA, 2009, pp. 5-143.

[16]R. Billinton and R. N. Allan, Reliability Evaluation of Power Systems, 2nd. ed., New York: Plenum Press, USA, 1996, pp. 117-246.

[17]E. Carpaneto, G. Chicco, and A. Prunotto, “Reliability of reconfigurable distribution systems including distributed generation,” in Proc. 2006 Int. Conf. Probabilistic Methods Applied to Power Sys., pp. 1-6.

[18]H. Joshi, Residential, Commercial and Industrial Electrical Systems: Network and Installation, vol. 2, New Delhi: Tata McGraw-Hill, India, 2008, pp. 18-76.

[19]Tele-fonika Kable S.A., Industrial and Mining Grade Cables North America Factory Invetory, Issue 3.7, Illinois: TF Cable, USA, 2010.

[20]D.-J. Shin, J.-O. Kim, K.-H. Kim, and C. Singh, “Probabilistic approach to available transfer capability calculation,” Electric Power Systems Research, vol. 77, pp. 813-820, May 2007.

[21]D. Zhu, “Power system reliability with distributed generators,” M.A. Thesis, Virginia Polytechnic Institute and State University, May 2003.

[22]A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control, 2nd. ed., New York: John Wiley & Sons, Inc., USA, 1996, pp. 410-551.

[23]R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, "MATPOWER''s Extensible Optimal Power Flow Architecture," IEEE Power and Energy Society General Meeting, pp. 1-7, July 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔