(3.234.221.162) 您好!臺灣時間:2021/04/14 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許乃文
研究生(外文):Nai-wen Hsu
論文名稱:生成水在電極內部之傳輸機制
論文名稱(外文):Water transport mechanism within the electrode of a PEMFC
指導教授:李明三李明三引用關係
指導教授(外文):Ming-San Li
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:105
中文關鍵詞:質傳水傳輸
外文關鍵詞:PEMFCmass transferwater transport
相關次數:
  • 被引用被引用:1
  • 點閱點閱:83
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
燃料電池裡,水是扮演著相當關鍵的角色,不但是發生反應的關鍵點,更可以濕潤膜增進膜傳導離子的能力;但過多的水卻會塞住通道阻礙氣體的傳輸使得性能下降。因此了解水的傳輸是相當重要的。
本研究主要利用水氣穿透過電極個別組件,藉此瞭解電極個別組件的水氣穿透傳輸特性,並且與電池性能做分析探討。
電池生成水的傳輸量測實驗中,確切的驗證出水氣穿透傳輸特性的高低與電池生成水的傳輸量測值有相對關係,當水氣穿透傳輸特性高的電極,反應在電池生成水的傳輸量測值就會較多。
從性能量測實驗可發現,水氣穿透傳輸特性與電池性能裡的濃度損失(即質傳表現)呈相對關係,當電池在高電流密度運行時,水氣穿透傳輸特性佳的電極不易有水的阻塞,催化層不會因為後續的反應氣體濃度不足,而造成性能衰退的現象,亦代表電池性能的質傳表現較好。從實驗中更發現,MPL含少量的PTFE對於電池而言,會有更佳的性能表現。
水以“液態”或“氣態”形式在電極內傳輸有何差異﹖透過簡單實驗中發現,氣態水穿透過MEA的速率確實比液態水還要快。初步推測水在電極內部生成時,最初是以“氣態”的形式生成。
Water plays an important role in the operation of Fuel Cell. It determines where the electrochemical reactions should or should not occur.
The purpose of this study is to investigate the transport characteristics of vapor through all components of an electrode and how they are related to the cell performance.
In the transmit experiment of cell produce water which prove the level of water steam transmission characteristics has relative relations with the measurements of water transport in fuel cell. In a sum, the electrode with higher water steam transmission characteristics, the measurement of water transport will also be higher.
From cell performance measure experiment, we can found that water steam transmission characteristics have the opposite relation with the concentration loss(mass transfer behavior). As cell working on high current density, water will not clog easily under the great quality transmit electrode. Further, catalyst layer that has enough concentration would not cause the cell performance dismiss with the follow up reactions and it represents that cell performs batter with mass transfer. According to the experiment, PTFE in MPL with smaller amount has better performance to fuel cell.
What the differences between the presentation of water as liquid state or gaseous state when it transmits in electrode? We can discover the rate of gaseous state water is faster compared to liquid state water when transmitting through MEA in a simple experiment. We assume that gaseous state of water is the first type within the electrode.
目錄 I
圖表目錄 Ⅴ
摘要 X
ABSTRACT XI
第一章 緒論 - 1 -
1.1 前言 - 1 -
1.2 燃料電池的優點與發展性 - 2 -
1.3 燃料電池的種類 - 4 -
第二章 PEMFC介紹 - 7 -
2.1 PEMFC的工作原理 - 7 -
2.2 PEMFC的架構 - 7 -
2.2.1 質子交換膜 - 8 -
2.2.2 電極 - 9 -
2.2.3 雙極板 - 10 -
第三章 影響燃料電池性能之因素 - 12 -
3.1 燃料電池的極化現象 - 12 -
3.2 產生極化的原因 - 12 -
3.3 研究動機與目的 - 13 -
3.4 文獻回顧 - 14 -
第四章 實驗設備與實驗材料介紹 - 21 -
4.1 實驗材料 - 21 -
4.2 實驗設備 - 22 -
4.3 氣壓噴灑系統的架設 - 27 -
第五章 電極製作與性能量測 - 29 -
5.1 電極個別組件的製作 - 29 -
5.1.1 GDL 的組件製作 - 29 -
5.1.2 MPL(微孔層) 的組件製作 - 29 -
5.1.3 GDL+MPL 的組件製作 - 31 -
5.2 電極個別組件的水氣穿透傳輸特性量測 - 31 -
5.2.1 水氣穿透傳輸特性的實驗量測模組 - 32 -
5.2.2 水氣穿透傳輸特性的量測步驟 - 32 -
5.3 電極的製作 - 33 -
5.3.1 GDL的處理 - 33 -
5.3.2 MPL(微孔層)的製作 - 33 -
5.3.3 CL(觸媒層)的製作 - 34 -
5.4 MEA製作過程 - 35 -
5.4.1 質子交換膜的處理 - 36 -
5.4.2 MEA熱壓 - 36 -
5.5 電池的量測 - 37 -
5.5.1 電池的規格 - 37 -
5.5.2 燃料氣體 - 38 -
5.5.3 電池生成水的傳輸量測及電池性能量測 - 38 -
第六章 實驗結果與分析 - 42 -
6.1 水氣穿透傳輸值的計算方式 - 42 -
6.2 電極個別組件的水氣穿透傳輸特性量測結果 - 43 -
6.2.1 GDL的水氣穿透傳輸特性結果 - 43 -
6.2.2 MPL的水氣穿透傳輸特性結果 - 44 -
6.2.3 GDL+MPL的水氣穿透傳輸特性結果 - 44 -
6.3 電池生成水的傳輸量測結果與分析 - 46 -
6.3.1 MEA1、MEA2、MEA3及MEA4的生成水傳輸量測- 46 -
6.3.2 四組MEA的生成水傳輸量測比較 - 47 -
6.4 電池的性能量測 - 49 -
6.4.1 MEA1及MEA3的性能量測結果 - 49 -
6.4.2 MEA1~MEA5的性能量測結果 - 50 -
6.4.3 活化損失、歐姆損失與濃度損失的表示 - 52 -
6.4.4 水氣穿透傳輸特性與電池性能間的關係 - 52 -
6.5 液態水與氣態水在MEA中的傳輸差異 - 53 -
6.5.1 實驗測試步驟 - 54 -
6.5.2 實驗結果 - 55 -
第七章 結論 - 56 -
7.1 結論 - 56 -
7.2 未來研究方向 - 57 -
参考文獻 - 58 -


1.“Investigation of water transport through membrane in a PEM fuel cell by water balance experiments”, Qiangu Yan, Hossein Toghiani, Junxiao Wu, Journal of Power Sources 158 (2006) 316–325

2.“An Experimental Investigation of Water Transport in PEMFCs The Role of Microporous Layers”, Kunal Karan, Hasan Atiyeh, Aaron Phoenix, Ela Halliop, Jon Pharoah, and Brant Peppley, Electrochemical and Solid-State Letters, 10 (2) B34-B38(2007)

3.“Effects of humidity and temperature on a proton exchange membrane fuel cell (PEMFC) stack”, Sunhoe Kim, Inkwon Hong, Journal of Industrial and Engineering Chemistry 14 (2008) 357–364

4.“Magnetic Resonance Imaging of the Water Distribution within a Polymer Electrolyte Membrane in Fuel Cells”, Shohji Tsushim, Kazuhiro Teranishi, and Shuichiro Hirai, Electrochemical and Solid-State Letters, 7 (9) A269-A272 (2004)

5.“A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding”, Alex Hakenjos, Harald Muenter, Ursula Wittstadt, Christopher Hebling, Journal of Power Sources 131 (2004) 213–216

6.“A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells”, Wei Dai, Haijiang Wang, Xiao-Zi Yuan, Jonathan J. Martin, Daijun Yang, Jinli Qiao, Jianxin Ma, International Journal of Hydrogen Energy 3 4 (2009) 9461–9478

7.“Visualization of water buildup in the cathode of a transparent PEM fuel cell”, Klaus Tüber, David Pócza, Christopher Hebling, Journal of Power Sources 124 (2003) 403–414

8.“Effects of Microporous Layers in Polymer Electrolyte Fuel Cells”, Adam Z. Weber, and John Newman, Journal of The Electrochemical Society, 152 (4) A677-A688 (2005)

9.“Water transport in polymer membranes for PEMFC”, Kyoung-Hwan Choi, Dong-Hyun Peck, Chang Soo Kim, Dong-Ryul Shin, Tae-Hee Lee, Journal of Power Sources 86(2000)197–201

10.“Transient behavior of water generation in a proton exchange membrane fuel cell”, Lixing Hao, Hongmei Yu, Junbo Houa, Wei Songa, Zhigang Shao, Baolian Yi , Journal of Power Sources 177 (2008) 404–411

11.“Assisted water management in a PEMFC with a modified flow field and its effect on performance”, Natthawoot Bunmark, Sunun Limtrakul, Michael W. Fowler, Terdthai Vatanatham, Jeff Gostick, International Journal of Hydrogen Energy 35 (2010) 6887-6896

12.“Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell”, Sandip Dutta , Sirivatch Shimpalee, J.W. Van Zee, International Journal of Heat and Mass Transfer 44 (2001) 2029-2042

13.“Liquid Water Removal from a Polymer Electrolyte Fuel Cell”, F. Y. Zhang, X. G. Yang, and C. Y. Wang, Journal of The Electrochemical Society, 153 (2) A225-A232 (2006)

14.“Ex situ visualization of liquid water transport in PEM fuel cell gas diffusion layers”, S. Litster, D. Sinton and N. Djilali, Journal of Power Sources 154 (2006) 95–105

15.“Diffusion layer parameters influencing optimal fuel cell performance”, L. R. Jordan, A. K. Shukla, T. Behrsing, N. R. Avery, B. C. Muddle, M. Forsyth, Journal of Power Sources 86 (2000) 250–254

16.“ In-situ visualization of liquid water in an operating PEMFC by soft X-ray radiography”, Takashi Sasabe, Shohji Tsushima and Shuichiro Hirai, International Journal of Hydrogen Energy XXX (2010) 1-10

17.“Effect of PTFE content in microporous layer on water management in PEMFCs”, Sehkyu Park, Jong-Won Lee, Branko N. Popov, Journal of Power Sources 177 (2008) 457–463

18.“以電噴灑技術製作PEMFC電極之探討” 陳佳興論文,國立中山大學機械與機電工程研究所,中華民國97年7月。

19.“能源危機”,丁仁東編著,五南圖書出版社,2009年9月

20.“燃料電池”,黃鎮江編著,全華科技圖書公司,2005年

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔