(3.215.183.251) 您好!臺灣時間:2021/04/23 14:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊明達
研究生(外文):Ming-Ta Yang
論文名稱:使用邊界元素法聲場分析與田口法於MEMS麥克風尺寸參數之最佳化設計
論文名稱(外文):Optimization of MEMS Microphone Size Parameters by BEM Sound Field Analysis and Taguchi Method
指導教授:楊旭光楊旭光引用關係
指導教授(外文):Shiuh-Kuang Yang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:83
中文關鍵詞:田口法變異數分析微機電麥克風聲場分布邊界元素法
外文關鍵詞:Sound Field DistributionTaguchi MethodBoundary Element MethodMEMS MicrophoneANOVA
相關次數:
  • 被引用被引用:1
  • 點閱點閱:183
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
MEMS麥克風,又稱微機電麥克風。具有高音質、低耗電、耐高溫、抗雜訊等優點,自1980年代以來學者們相繼投入研究,至今已是3G手機的基本配備。有鑑於MEMS麥克風的性能改善多為內部電路晶片製程中的技術改良或新材料的應用,本文使用工業設計上廣泛使用之田口法,對MEMS麥克風外部的封裝腔體尺寸進行設計,並搭配邊界元素聲場分析軟體BEASY,以腔內聲壓最大值的增加做為麥克風性能改善之目標,期望提供一個低成本、較快速設計的新想法。本文以田口法規劃腔體尺寸,搭配BEASY軟體得到建議的尺寸組合,最後進行最佳化,得到最佳的尺寸設計。結果顯示,正常發聲頻帶下田口法得到參數尺寸組合已使腔內聲壓有2.2 dB ~ 2.4dB之增益,且僅空孔位置此參數影響最為顯著,只要移動空孔位置即可達到最佳化設計;而最佳化結果顯示將空孔位置往邊界移動,確實可得到更大的聲壓值,約有0.3 dB ~ 0.6 dB之聲壓增益;從聲場分布圖可看出,聲源頻率增加亦會使角落最大聲壓值更大且沿腔體厚度上呈現均勻分布。
Since the micro-electro mechanical system microphone, MEMS microphone, has the advantages of superior sound quality, low power consumption, higher temperature resistance and anti-noise ability in used. The researchers therefore have studied the functions of MEMS microphone since 1980s. The MEMS microphones is applied as the part of 3G mobile phone in the market. Though the functions of microphone are improved by manufacturing process technique and new material designed, this study tends to provide a new, low-cost and rapid design idea to gain the performance in chamber of microphone. Taguchi method and BEASY software, which is boundary element method, are combined to evaluate the results of the design in sound field. Taguchi method is a famous method in industrial design to find out relations between system parameters and chamber size. BEASY is a tool for sound field analysis in the research. The result from Taguchi method appears the sound pressure level gain about 2.2 dB to 2.4 dB due to the change of microphone chamber size only. It is also interested in studying the optimization design for position of microphone. It is displayed that the location of port is closer to the boundary of chip will also increase about 0.3 dB to 0.6dB sound pressure level in sound field. The higher frequency of sound source will also create larger sound pressure level at two corners on the port.
目錄…………………………………………………………i
表目錄………………………………………………………iv
圖目錄………………………………………………………vi
中文摘要……………………………………………………ix
Abstract ……………………………………………………x
第一章 緒論
1.1 研究動機與目的………………………………………1
1.2 文獻回顧與MEMS麥克風簡介 ………………………2
第二章 研究基本理論
2.1 聲學相關理論…………………………………………9
2.1.1 波動方程式 …………………………………………9
2.1.2 聲波的反射、透射與散射…………………………10
2.2 邊界元素法……………………………………………11
2.2.1 邊界元素法原理……………………………………11
2.2.2 以邊界元素法模擬聲場變化………………………12
2.2.3 邊界元素軟體介紹與處理步驟……………………14
2.2.4 使用元素介紹………………………………………16
2.2.5 模擬參數設定………………………………………18
第三章 參數設計法
3.1 參數設計法……………………………………………25
3.2 田口法概述……………………………………………25
3.2.1 品質特性SN比與損失函數 ………………………27
3.2.2 參數選擇與直交表設計……………………………29
3.2.3 變異數分析…………………………………………30
3.2.4 各因子效應與交互作用……………………………31
3.2.5 確認結果之實驗……………………………………34
3.3 最佳化設計……………………………………………35
第四章 模擬與結果討論
4.1 結果與討論 …………………………………………43
4.1.1 田口法………………………………………………43
4.1.2 最佳化設計…………………………………………46
4.1.3 聲場分布……………………………………………46
4.2 聲壓增益 ……………………………………………47
4.2.1 聲壓增益與頻率效應………………………………47
4.2.2 聲壓增益與溫度效應………………………………48
第五章 結論與建議
5.1 結論……………………………………………………65
5.2 建議……………………………………………………66
參考文獻 …………………………………………………68
1. R. Schellin and G. Hess, “A Silicon Subminiature Microphone Based on Piezoresistive Polysilicon Strain Gauges,” Sensors and Actuators A, Vol. 32, pp. 555-559, 1992.
2. R. Shellin, M. Strecker, U. Nothelfer, and G. Schuster, “Low Pressure Acoustic Sensors for Airborne Sound with Piezoresitive Monocrystalline Silicon and Electrochemically Etched Diaphragms,” Sensors and Actuators A, Vol. 46-47, pp. 156-160, 1995.
3. M. Sheplak, K.S. Breuer, and M.A. Schmidt, “A Wafer-Bonded, Silicon-Nitride Membrane Microphone with Dielectrically-Isolated, Signal-Crystal Silicon Piezoresistors,” Solid-State Sensor and Actuator Workshop, Hilton Head, SC (TRF, Cleveland Heights, Ohio, 1998), pp. 23-26.
4. M. Royer, J.O. Holmen, M.A. Wurm, O.S. Aadland, and M. Glenn, “ZnO on Si Integrated Acoustic Sensor,” Sensors and Actuators, Vol. 4, pp. 357-362, 1983.
5. C. H. Han and E. S. Kim, “Micromachined piezoelectric ultrasonic transducers based on parylene diaphragm in silicon substrate,” in IEEE International Ultrasonic Symposium, San Juan, Puerto Rico, 2000, pp. 919-923.
6. M. Brauer, A. Dehé, T. Brver, S. Barzen, S. Schmitt, M. Füldner and R. Aigner, “Silicon microphone based on surface and bulk micromachining”, Journal of Micromechanics and Microengineering, Vol. 11, pp. 319-322, 2001.
7. A. Dehé, R. Aigner, T. Bever, K.-G. Oppemann, E. Pettenpaul, S. Schmitt, H.-J. Timme, “Silicon Micromachined Microphone Chip at Siemens,” Journal of the Acoustic Society of America., vol. 105, pp. 997, 1999.
8. Q. Zou, Z. Li and L. Liu, “Design and fabrication of single wafer silicon condenser microphone using corrugated diaphragms,” IEEE Journal of Microelectromechanical Systems., Vol. 5, pp. 197-204, 1996.
9. J. Bergqvist and F. Rudolf, J. Maisano, F. Parodi and M. Rossi, “A silicon condenser microphone with a highly perforated backplate”, Proceedings of Transducers ’91, vol. 24-27, pp. 266-269, 1991.
10. http://www.eettaiwan.com/login.do?fromWhere=/ART_8800489776_617723_NT_7cdaf7a6.HTM
11. W. Soede, J.B. Augustinus, J. Berkhout, and F. A. Bilsen, “Development of a Directional Hearing Instrument Based on Array Technology,” Journal of the Acoustical Society of America, Vol. 105, pp. 785-795, 1993.
12. E.D. McKinnery and V.E. DeBrunner, “A Two-microphone Adaptive Broadband Array for Hearing Aids,” Proc ICASSP 96 Atlanta, GA, pp. 933-936, 1996.
13. M.W. Hoffman and R.W. Stewart, “Simulation of Multi-microphone Hearing Aids in Multiple Interference Environments,” The British Journal of Radiology., vol. 30, pp. 249-260, 1996.
14. M.C. Killion, J. Stuart, D. Wilson, M.J. Roberts, S. Iseberg, and S.T. Monroe, “Directional Microphone Assembly,” U.S. Patent 5 878 147, 1999.
15. B. Csermak, “A Primer on a Dual Microphone Directional System,” Hearing Rev., Vol. 7, pp. 56-60, 2000.
16. S. Bauer, Ed., “Microphones White Paper,” in Proceedings From the Stakeholder Forum on Hearing Enhancement: Rehab. Eng. Res. Center Technol. Transfer, State Univ. New York, Buffalo, pp. 87-94, 2000.
17. S. Chowdhury, M. Ahmadi and W.C. Miller, “Design of a MEMS Acoustical Beamforming Sensor Microarray”, IEEE Sensors Journal, Vol. 2, No. 6, pp. 617-627, 2002.
18. http://www.eettaiwan.com/login.do?fromWhere=/ART_8800538545_480502_NP_e831ef93.HTM
19. http://www.eettaiwan.com/login.do?fromWhere=/ART_8800564271_480102_NT_6583077f.HTM
20. http://www.knowles.com/search/products/m_surface_mount.jsp
21. 黃柏瑋,使用邊界元素法研究聲子晶體聲場特性,國立中山大學碩士論文,中華民國九十六年七月。
22. S.M. Niku, R.A. Adey, T.R. Bridges, “Application of BEASY to Industrial and Environmental Acoustics,” Lyndhurst Road, Ashurst, Southampton, U.K., 1993.
23. R.D. Ciskowski, C.A. Brebbia, “Boundary Element Methods in Acoustics,” Computational Mechanics Publications, Southampton and Elsevier Applied Science, London 1991.
24. BEASY User Guide, Computational Mechanics BEASY, Southampton, England 1994.
25. 丁志華、游璨瑋、戴寶通、朝春光,田口實驗計畫法簡介(II),毫微米通訊,第八卷第四期,中華民國90年11月。
26. 陳耀茂,田口實驗計畫法,滄海書局,中華民國86年4月。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔