(3.235.25.169) 您好!臺灣時間:2021/04/20 02:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李雅絹
研究生(外文):Ya-Chuan Lee
論文名稱:石油碳氫化合物污染地下水之自然生物整治成效評估
論文名稱(外文):Performance evaluation of intrinsic bioremediation on the treatment of petroleum-hydrocarbon contaminated groundwater
指導教授:高志明高志明引用關係
指導教授(外文):Chih-Ming Kao
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:167
中文關鍵詞:BIOSCREEN模式Mann-Kendall TestBTEX監測式自然衰減
外文關鍵詞:BIOSCREEN modelBTEXmonitored natural attenuation(MNA)Mann-Kendall Test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,國內土壤及地下水受油品污染事件日益增多,這些污染場址中又以中油公司高雄煉油廠及苓雅寮儲運所之漏油事件最受著目。在台灣約有25%至30%之用水來自地下水,是故對地下水資源的保護與土壤/地下水污染之整治已到了刻不容緩的地步。本研究利用監測式自然衰減(monitored natural attenuation, MNA)工法,進行本場址之整治成效評估,以瞭解自然衰減應用在本場址之可行性及污染物之自然衰減效率。本研究利用實場進行相關探討,於監測期間共進行4次採樣,依採樣結果進行實場之碳氫化合物污染團濃度變化及分布評估。分析結果顯示,研究實場之石油碳氫化合物(苯)污染濃度呈下降趨勢。而由場址之溶氧消耗、硝酸鹽減少、亞鐵離子產生、硫酸鹽消耗及二氧化碳與甲烷生成等結果,可證實生物降解作用存在於本場址,且在污染物之降解過程中扮演關鍵及重要之角色。而以生物降解率、一階衰減率、Mann-Kendall Test及BIOSCREEN模式來進行場址自然衰減效率評估。由分析結果可知,本場址生物降解容量為8.261 mg/L,此容量高於場址之地下水污染量(介於3-4 mg/L),故自然生物降解機制應可有效去除地下水中污染物。實場場址之ㄧ階衰減率介於1.7×10-3 - 9.0×10-4 day-1,由此顯示本場址有明顯之自然衰減作用,而自然衰減速率亦在合理之範圍(10-3 - 10-4 day-1)。由Mann-Kendall Test所進行之場址石油碳氫化合物分析結果顯示,監測井SW-1W、SW-4W、SW-42W、SW-23W、SW-30W、及SW-70W之衰減值(S值)為-2.23607、-1.16276、-1.52053、-1.34164、-1.26323及-1.34164,由此顯示在受污染之監測井中所分析之S值皆小於0,均呈現減少趨勢,故推估本場址內的污染團呈現穩定或衰減狀態。本研究亦利用由BIOSCREEN模式進行分析,由模擬結果可知假設本場址假設現地中沒有任何之生物降解作用發生,則苯污染團可能擴散至更遠距離,而當場址有自然發生之物化機制時,污染團則會被控制在離污染源220 m的距離內,即本場址實際監測範圍。在BIOSCREEN一階衰減反應模擬結果中,被生物降解作用所移除的BTEX [苯(benzene)、甲苯(toluene)、乙苯(ethylbenzene)、二甲苯(xylene), BTEX]污染物比例為89%。而在瞬間反應之生物降解作用所移除的BTEX污染物之比例為86%,因此無論是一階衰減反應或瞬間反應,均可以有效降解污染物,且由此模式的模擬結果可知,自然衰減機制中的生物降解是造成污染物濃度降低的最重要機制。由變性梯度膠體電泳(denaturing gradient gel electrophoresis, DGGE) 所進行之菌相分析結果顯示,本場址污染區與背景區監測井之菌相有顯著的變化,由此顯示,當場址受到石油碳氫化合物污染,將會造成場址中之微生物產生變化。定序結果顯示,本場址中具有還原硫及鐵特性之微生物包含Acidovorax sp.、Acidovorax sp. TEG20、Acidovorax sp. TEG8、Uncultured Thiobacillus sp. clone X-41及Uncultured Thiobacillus sp. clone F5OHPNU07IDY6B等。此外,存在具有降解石油碳氫化合物之微生物包含Aquincola tertiaricarbonis L10、Bosea sp. GR060219、Brachymonas petroleovorans strain CHX、Hydrogenophaga sp. p3 (2011)、Hydrogenophaga sp.、Methylibium sp. YIM 61602、Mycobacterium sp.、Rhodoferax sp. IMCC1723、Rhodoferax sp.、Uncultured Rhodocyclaceae bacterium clone Elev_16S_975、Uncultured Rhodocyclaceae bacterium clone eub62B1及Uncultured Beggiatoa sp. clone GE7GXPU01BJTWR等。由上述結果可知,本場址具有許多降解石油碳氫化合物之微生物,故利用現地微生物降解本場址污染物應可達到一定的成效。目前的監測結果顯示自然衰減機制正於本場址進行中,並是造成污染物濃度降低的原因之ㄧ,而污染物之衰減速率亦在合理範圍內。因此監測式自然衰減應可搭配其他技術作為本場址之整治工法選項。
Accidental spills of hydrocarbons from underground storage tanks or pipelines are a common cause of subsurface contamination. Anthropogenic hydrocarbon contamination of soil is a global issue throughout the industrialised world. In England and Wales alone, 12% of all serious contamination incidents in 2007 were hydrocarbon related. Biodegradation could be in situ process leading to a decrease of benzene concentrations in groundwater. Recently, monitored natural attenuation has become an effective alternative to the more active remediation methods for the in situ treatment of contaminated subsurface environments. The main objective of this study was to examine the possibility of adopting monitored natural attenuation as a remediation technique for the contaminated groundwater aquifer. In this natural attenuation study, the following tasks were conducted bioremediation investigation, biological first-order decay rates, Mann-Kendall Test model and BIOSCREEN model for the contaminated groundwater aquifer. In this study, a full-scale natural bioremediation investigation was conducted at a petroleum hydrocarbon spill site. In this study, The calculated biodegradation capacity (8.261 mg/L) at this site is much higher than the detected concentrations of petroleum-hydrocarbons (3-4 mg/L) within the most contaminated area inside the plume. Thus, natural biodegradation should be able to remove the contaminants effectively. The calculated biological first-order decay rates for benzene were between 1.7×10-3-9.0×10-4 day-1 respectively. Mann-Kendall test was applied to analyze the trend of contaminant variations. Results show that the S-value of monitor wells SW-1W, SW-4W, SW-42W, SW-23W, SW-30W, SW-67W and SW-70W were -2.23607, -1.16276, -1.52053, -1.34164, -1.26323, 0 and -1.34164, respectively. The negative S values reveal that the all contaminants tended to decrease. This indicates that the hydrocarbon plume at this site is not expanding, and has been contained effectively by the natural attenuation mechanisms. BIOSCREEN model from the groundwater analyses indicate, a first-order decay model reached the downgradient monitor well located 220 m from the spill location. that approximately 89% of the contaminate removal was due to biodegradation processes. The study of petroleum-hydrocarbons bacterial consortium were include Aquincola tertiaricarbonis L10、Bosea sp. GR060219、Brachymonas petroleovorans strain CHX、Hydrogenophaga sp. p3(2011)、Hydrogenophaga sp.、Methylibium sp. YIM 61602、Mycobacterium sp.、Rhodoferax sp. IMCC1723、Rhodoferax sp.、Uncultured Rhodocyclaceae bacterium clone Elev_16S_975、Uncultured Rhodocyclaceae bacterium clone eub62B1及Uncultured Beggiatoa sp. clone GE7GXPU01BJTWR. Thus, the in situ bioremediation technology has the potential to be developed into an environmentally, economically and naturally acceptable remediation technology. Evidences for the occurrence of natural attenuation include the following: (1) depletion of dissolved oxygen, nitrate, and sulfate; (2) production of dissolved ferrous iron, sulfide, and CO2; (3) decreased BTEX concentrations and BTEX as carbon to TOC ratio along the transport path; (4) increased alkalinity and microbial species; (5) limited spreading of the BTEX plume; and (6) preferential removal of certain BTEX components along the transport path. Results indicate that natural attenuation can effectively contain the plume, and biodegradation processes played an important role on contaminant removal.
謝誌 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 地下水油品污染來源 3
2.1.1 石油碳氫化合物之特性及其危害 4
2.1.2 石油碳氫化合物之管制標準 7
2.2 土壤及地下水整治技術發展趨勢 8
2.3 綠色整治技術 9
2.4 生物復育技術之定義 10
2.5 現地加強式生物整治技術 11
2.6 監測式自然衰減 13
2.6.1 基本原理 13
2.6.2 自然衰減機制 14
2.6.3 自然衰減優缺點及使用限制 22
2.6.4 自然衰減評估參數介紹 24
2.6.5 監測式自然衰減於實場之案例 25
2.7 石油碳氫化合物之生物分解 27
第三章 場址背景介紹 31
3.1 場址歷史背景 31
3.2 場址特性 32
3.2.1 氣候條件 32
3.2.2 地形條件 33
3.2.3 地質條件 34
3.2.4 地表水文 36
3.2.5 水文地質 38
3.2.6 地下水文 40
3.3 污染物、污染範圍及污染程度 41
3.3.1 桃園縣環保局調查結果 41
3.3.2 本場址補充調查結果 43
3.3.3 本場址污染改善成效評估結果 47
3.3.4 本場址「改善計畫書」定期監測結果 51
3.3.5 自然衰減採樣分析 58
第四章 研究方法 62
4.1 現場採樣與樣品分析方法 62
4.1.1 採樣方法 62
4.1.2 實驗室樣品分析方法 64
4.2 自然衰減評估 67
4.2.1 污染團趨勢分析 67
4.2.2 生物降解率 67
4.2.3 一階衰減率 69
4.2.4 Mann-Kendall Test 69
4.2.5 BIOSCREEN模式 71
4.2.5.1 BIOSCREEN模式原理 72
4.2.5.2 BIOSCREEN模式輸入參數 74
4.3 菌相分析 77
4.3.1 地下水微生物DNA的萃取及純化 77
4.3.2 聚合酶連鎖反應 (polymerase chain reaction, PCR) 77
4.3.3 PCR-16S rDNA片段純化與濃縮 78
4.3.4 變性梯度膠體電泳 79
4.3.5 SYBR greenⅠ螢光染色 79
4.3.6 以mixed DNA進行定序 80
4.3.7 NCBI比對序列 80
第五章 結果與討論 81
5.1 污染團之空間分布 81
5.2 污染團趨勢分析 81
5.3 總石油碳氫化合物分析結果 86
5.4污染團橫向與縱向濃度變化 86
5.5 電子接受者指標參數分析 94
5.6 自然衰減模式分析 115
5.6.1 生物降解容量之分析結果 115
5.6.2 一階衰減率分析結果 115
5.6.3 Mann-Kendall Test分析結果 116
5.6.4 BIOSCREEN模式分析結果 117
5.7 菌相分析結果 125
第六章 結論與建議 140
6.1 結論 140
6.2 建議 141
參考文獻 142


Abalos, A., Vin˜as, M., Sabate´, J., Manresa, M. A. and Solanas, A. M., (2004). Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation, 15, 249-260.
Abu, G. O. and Dike, P. O., (2008). A study of natural attenuation processes involved in a microcosm model of a crude oil-impacted wetland sediment in the Niger Delta. Bioresource Technology, 99, 4761-4767.
Allen, J. P., Atekwana, E. A., Atekwana, E. A., Duris, J. W., Werkema, D. D. and Rossbach, S., (2007). The microbial community structure in petroleum - contaminated sediments corresponds to geophysical signatures. Applied and Environmental Microbiology. 73, 2860-2870.
Alvarez, P. J. J. and Illman, W., (2006). Bioremediation and Natural Attenuation of Groundwater Contaminants: Process Fundamentals and Mathematical Models John Wiley & Sons , Hoboken, NJ.
Alvarez-Cohen, L. and Speitel Jr., G. E., (2001). Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation, 12, 105-126.
Aulenta, F., Majone, M. and Tandoi, V., (2006). Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. Journal of Chemical Technology and Biotechnology, 81, 1463-1474.
Aulenta, F., Majone, M. and Tandoi, V., (2006). Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. Journal of Chemical Technology and Biotechnology, 81, 1463-1474.
Azadpour-Keeley, A. and Barcelona, M. J., (2006). Design of an MTBE remediation technology evaluation, Journal compilation, National GroundWater Association. Ground Water Monitoring & Remediation, 26, 103-113.
Baciocchi, R., Berardi, S. and Verginelli, I., (2010). Human health risk assessment: Models for predicting the effective exposure duration of on-site receptors exposed to contaminated groundwater. Journal of Hazardous Materials, 181, 226-233
Bacosa, H., Suto, K. and Inoue, C., (2010). Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium. International Biodeterioration & Biodegradation, 64, 702-710.
Bedient, P. B., Rifai, H. S., and Newell, C. J., (1994). Ground water contamination: transport and remediation. Prentice Hall, Inc., New Jersey, 237-477.
Beller, H. R., Reinhard, M. and Grbic-Galic, D., (1992). Metabolic by-products of anaerobic toluene degradation by sulfate-reducing enrichment culture. Applied and Environmental Microbiology, 58, 3192-3195.
Birk, G. M., Knox, S. L. and Yeh, M. C., (2010). Accelerated site cleanup using a sulfate-enhanced in situ remediation strategy.
Brar, S. K., Verma, M. R., Surampalli, Y., Misra, K., Tyagi, R. D. and Meunier, J. F., (2006). Blais, Bioremediation of hazardous wastes-a review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10, 59-72.
Brassington, K. J., Hough, R. L., Paton, G. I., Semple, K. T., Risdon, G. C., Crossley, J., Hay, I., Askari, K., and Pollard, S. J. T., (2007). Weathered hydrocarbon wastes: management primer. Critical Reviews in Environmental Science and Technology, 37, 199-232.
Bruce1, L., Kolhatkar, A. and Cuthbertson, J., (2010). Comparison of BTEX attenuation rates under anaerobic conditions. International Journal of Soil, Sediment and Water, 3, 2-11.
Campbell, M. A., Chain, P. S. G., Dang, H. Y., El Sheikh, A. F., Norton, J. M., Ward, N. L., Ward, B. B. and Klotz, M. G., (2011). Nitrosococcus watsonii sp. nov., a new species of marine obligate ammonia-oxidizing bacteria that is not omnipresent in the world''s oceans: calls to validate the names ''Nitrosococcus halophilus'' and ''Nitrosomonas mobilis'' FEMS Microbiology Ecology, 76, 39-48.
Chen, J. S., Liang, C. P., Chen, C. Y., and Liu, C. W., (2007). Composite analytical solutions for a soil vapor extraction system. Hydrological Processes : in press, (SCI )
Chen, J. S., Liu, C. W., Hsu, H. T. and Liao, C. M., (2003). A Lapace transformed power series solution for solute transport in a convergent flow field with scale-dependent dispersion. Water Resources Research, 39, 1229.
Chen, K. F., Kao, C. M., Chen, C. W., Surampalli, R. Y. and Lee, M. S., (2010). Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation. Journal of Environmental Sciences, 22, 864-871.
,Chen, K. F., Kao, C. M., Chen, T. Y., Weng, C. H. and Tsai, C. T., (2006). Intrinsic bioremediation of MTBE-contaminated groundwater at a petroleum-hydrocarbon spill site. Environmental Geology, 50, 439-445.
Coates, J. D., Chakraborty, R. and McInerney, M. J., (2002). Anaerobic benzene biodegradation - a new era. Research in Microbiology, 153, 621-628.
Coupland, K. and Johnson, D. B., (2004). Geochemistry and microbiology of an impounded subterranean acidic water body at Mynydd Parys, Anglesey, Wales. Geobiology, 2, 77-86.
Cravo-Laureau, C., Grossi, V., Raphel, D., Matheron, R. and Hirschler-Rea, A., (2005). Anaerobic n-alkane metabolism by a sulfate-reducing bacterium. Desulfatibacillum aiphaticivorans Strain CV2803. Applied Environmental Microbiology, 71, 3458-3467.
Cuthbertson, J. and Schumacher, M., (2010). Full scale implementation of sulfate enhanced biodegradation to remediate petroleum impacted groundwater. Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, 14, 15.
Cuthbertson, J. F., Kaestner, J. A. and Bruce, L. G., (2007). Use of high concentration magnesium sulfate solution to remediate petroleum impacted groundwater. Proceedings of the Annual International Conference on Soils, Sediments. Water and Energy, 12, 24
Cuthbertson, J., Patterson, S., O''Harte, F. P. M. and Bell, P. M., (2009). Investigation of the effect of oral metformin on dipeptidylpeptidase-4 (DPP-4) activity in Type 2 diabetes, Journal compilation, Diabetes UK. Diabetic Medicine, 26, 649-654.
Choi, H. M. and Lee, J. Y., (2011). Groounwater contamination and natural attenuation capactive at a petroleum spilled facility in Koera. Journal of Environmental Sciences, 23, DOI: 10.1016/S1001-0742(10)60568-2
Cecan, L. and Schneiker, R. A., (2010). BIOSCREEN, AT123D and MODFLOW/MT3D a comprehensive review of model results. International Journal of Soil, Sediment and Water, 3, Article 12.
Das, K. and Mukherjee, A. K., (2006). Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India, Bioresource Technology, 10, 10-16.
Devlin, J. F., Katic, D. and Barker, J. F., (2004). In situ sequenced bioremediation of mixed contaminants in groundwater. Journal of Contaminant Hydrology, 69, 233-261.
Dyer M., (2003). Field investigation into the biodegration of TCE and BTEX at a formermetal plating works. Engineering Geology, 70, 321-329.
Environment Agency., (2005). The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbons in Soils. Science Report, P5-080/TR3.
Fries, M. R., Forney, L. J. and Tiedje, J. M., (1997). Phenol and toluene degrading microbial population from an aquifer in whish successful trichloroethene cometabolism occurred. Applied and Environmental Microbiology, 63, 1523-1530.
Gallagher, E., McGuinness L., Phelps C., Young, L. Y. and Kerkhof, L. J., (2005). 13C - carrier DNA shortens the incubation time needed to detect benzoate-utilizing denitrifying bacteria by stableisotope probing. Applied and Environmental Microbiology, 71, 5192-5196.
Gomez, C. A., (1993). Characterization of a Dissolved Hydrocarbon Plume. M. S. Thesis, North Carolina State University, Raleigh, NC, USA.
Griebler, C. and Lueders, T., (2009). Microbial biodiversity in groundwater ecosystems, Freshwater Biology, 54, 649-677.
Hamamura, N., Olson, S. H., Ward, D. M. and Inskeep, W. P., (2005). Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park. Applied and Environmental Microbiology, 71, 5943-5950.
Hatzinger, P. B., McClay, K., Vainberg, S., Tugusheva, M., Condee, C. W. and Steffan, R. J., (2001). Biodegradation of Methyl tert-Butyl Ether by a pure bacterial culture. Applied and Environmental Microbiology, 67, 5601-5607.
Head I. M., Hiorns, W. D., Embley, T. M., McCarthy, A. J. and Saunders, J. R., (1993). The phylogeny of the autotrophic ammonia-oxidizing bacteria as determined by analysis of16S ribosomal RNA gene sequence. Journal of General Microbiology, 139, 1147-1153.
Heron, G., Grouzet, C., Bourg, A. C. and Christensen, T. H., (1994). Specification of Fe(II) and Fe(III) in Contaminated Aquifer Sediments using Chemical Extraction Techniques. Environmental Science and Technology, 28,1698-1705.
Illman, W. A. and Alvarez, P. J., (2009). Performance Assessment of Bioremediation and Natural Attenuation. Critical Reviews in Environmental Science and Technology, 39, 209-270.
Jahn, M. K., Haderlein, S. B. and Meckenstock, R. U., (2005). Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Applied and Environmental Microbiology, 71, 3355-3358.
Jehmlich, N., Kleinsteuber, S., Vogt, C., Benndorf, D., Harms, H., Schmidt, F., von Bergen, M. and Seifert, J., (2010). Phylogenetic and proteomic analysis of an anaerobic toluene-degrading community. Journal of Applied Microbiology ISSN, 1364-5072.
Johnson, P. C., Lundegard, P. and Liu, Z., (2006). Source zone natural attenuation at petroleum hydrocarbon spill sites. I. Site-specific assessment approach, Ground Water Monitoring and Remediation, 26, 82-92.
Jurelevicius, D., Korenblum, E., Casella, R., Vital, R.L. and Seldin, L., (2010). Polyphasic analysis of the bacterial community in the rhizosphere and roots of Cyperus rotundus L. Grown in a Petroleum-Contaminated Soil. Journal Microbiology Biotechnol., 20, 862-870.
Kao, C. M. and Prosser, J. (2001). Evaluation of natural attenuation rate at a gasoline spill site, Journal of Hazardous Materials B82, 275-289.
Kao, C. M., Chien, H. Y., Surampalli, R. Y., Chien, C. C., and Chen, C. Y., (2010). Assessing of natural attenuation and intrinsic bioremediation rates at a petroleum-hydrocarbon spill site: Laboratory and field studies. Journal of Environmental Engineering, 136, 1.
Kao, C. M., Huang, W. Y., Chang, L. J., Chien, H. Y. and Hou, F., (2005). Application of monitored natural attenuation to remediate a petroleum- hydrocarbon spill site. Water Science and Technology, 53, 321-328.
Kao, C. M. and Prosser, J., (1999). Intrinsic bioremediation of trichloroethene and chlorobenzene: Field and laboratory studies. Journal of Hazardous Materials, B69, 67-79.
Kao, C. M. and Wang, C. C., (2000). Control of BTEX migration by intrinsic bioremediation at a gasoline spill site. Water Research, 34, 3413-3423.
Kao, C. M. and Wang, Y. S., (2001). Application of microbial enumeration technique to evaluate the occurrence of natural bioremediation. Environmental Geology, 40, 622-631.
Kendall, M. G., (1975). Rank Correlation Methods, 4th ed. Charles Griffin, London, UK.
Kennedy, L. G. and Everett, J. W., (2001). Microbial degradation of simulated landfill leachate: solid iron/sulfur interactions. Advances in Environmental Research, 5, 103-116.
Kleikemper, J., Pombo, S. A., Schroth, M. H., Sigler, W. V., Pesaro, M. and Zeyer, J., (2005). Activity and diversity of methanogens in a petroleum hydrocarbon - contaminated aquifer, Applied and Environmental Microbiology, 71, 149-158.
Kocamemi, B. A. and Çeçen, F., (2005). Cometabolic degradation of TCE in enriched nitrifying batch systems. Journal of Hazardous Materials, B125, 260-265.
Kolhatkar, R., Wilson, J. T. and Dunlap, L. E., (2000). Evaluating Natural Biodegradation of MTBE at Multiple UST Sites. NGWA/API Petroleum Hydrocarbons & Organic Chemicals in Groundwater, API, 32-49.
Kota, S., (1998). Biodegradation in contaminated aquifers: Influence of microbial ecology and iron bioavailability. Ph.D. Dissertation, North Carolina State University, Raleigh, NC, U.S.A.
Lechner, U., Brodkorb, D., Geyer, R., Hause, G., Härtig C., Auling, G., Fayolle-Guichard, F., Piveteau, P.l, Müller R. H. and Rohwerder, T., (2007). Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 57, 1295-1303.
Lee, J. Y., and Lee, K. K., (2003). Viability of natural attenuation in a petroleum-contaminated shallow sandy aquifer. Environmental Pollution, 126, 201-212.
Lei, L., Khodadoust, A. P., Suidan, M. T. and Tabak, H. H., (2005). Biodegradation of sediment-bound PAHs in field-contaminated sediment, Water Research, 39, 349-361.
Lenczewski, M., Jardine, P., McKay, L., and Layton, A., (2003). Natural attenuation of trichloroethylene in fractured shale bedrock. Journal of Contaminant Hydrology. 64, 151-168,
Li, W., Zhang, Y., Wang, M. D. and Shi, Y., (2005). Biodesulfurization of dibenzothiophene and other organic sulfur compounds by a newly isolated Microbacterium strain ZD-M2. FEMS Microbiology Letters, 247, 45-50.
Liu, W., Luo, Y., Teng, Y., Li, Z. and Christie, P., (2009). Prepared bed bioremediation of oily sludge in an oilfield in northern China. Journal of Hazardous Materials, 161, 479-484.
Lundegard, P. and Johnson, P. C., (2006). Source zone natural attenuation at petroleum hydrocarbon spill sites. II. Application to a former oil field, Ground Water Monitoring & Remediation, 26, 93-106.
La Scala, N., Lopes, A., Spokas, K., Archer, D. W. and Reicosky, D. C., (2009). Short-term temporal changes of bare soil CO2 fluves after tillage described by first-order decay models. European Journal of Soil Science, 60, 258-264.
La Scala, N., Lopes, A., Spokas, K., Bolonhezi, D., Archer, D. W. and Reicosky, D. C., (2008). Short-term temporal changes of bare soil carbon loss after tillage described by first-order decay model. Soil & Tillage Research, 99, 108-118.
Madigan, M. T., J. M. Martinko, and J. Parker., (2000). Brock Biology of Microorganisms, vol. Prentice-Hall, Upper Saddle River, N. J.
Maier, U., Rugner, H. and Grathwohl, P., (2007). Gradients controlling natural attenuation of ammonium. Applied Geochemistry, 22, 2606-2617.
Mancera-López, M. E., Esparza-García, F., Chávez-Gómez,B., Rodríguez-Vázquez, R. Saucedo-Castañeda, G. and Barrera-Cortés, J., (2008). Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. International Biodeterioration & Biodegradation, 61, 151-160.
Mario, S. and Butler, B. J., (2004). Transport behaviour and natural attenuation of organic contaminants at spill sites. Toxicology, 205, 173-179.
Montagna, P. A. and Spies, R. B., (1985). Meiofauna and chlorophyll associated with Beggiatoa mats of a natural submarine petroleum seep. Marine Environmeneal Research, 16, 231-242.
Mulligan, C. N. and Yong, R. N., (2004). Natural attenuation of contaminated soils. Environment International, 30, 587-601.
Nakagawa, T., Nakagawa, S., Inagaki, F., Takai, K., and Horikoshi, K., (2004). Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures. FEMS Microbiology Letters, 232, 145-152
Nakatsu, C.H., Hristova, K., Hanada, S., Meng, X.Y., Hanson, J. R., Scow, K. M. and Kamagata, Y., (2006). Methylibium petroleiphilum gen. nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. International Journal of Systematic and Evolutionary Microbiology, 56, 983-989.
Nardi I. R., Ribero, R., Zaiat, M. and Foresti, E., (2005). Anaerobic packed-bed reactor for bioremediation of gasoline-contaminated aquifer, Process Biochemistry, 40, 587-592.
Neuhauser, E. F., Ripp, J. A., Azzolina, N. A., Madsen, E. L., Mauro, D. M. and Taylor, T., (2009). Monitored natural attenuation of manufactured gas plant tar mono- and polycyclic aromatic hydrocarbons in ground water: A 14-year field study. Ground Water Monitoring and Remediation, 29, 66-76.
Obuekwe, C. O., Al-Jadi, Z. K. and Al-Saleh, E. S., (2009). Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment. International Biodeterioration & Biodegradation, 63, 273-279
Ojo, O. A., (2006). Petroleum-hydrocarbon utilization by native bacterial population from a wastewater canal Southwest Nigeria., African Journal of Biotechnology, 5, 333-337.
Pollock, J., Weber, K. A., Lack, J., Achenbach, L. A., Mormile, M. R., Coates, J. D., (2007). Alkaline iron(III) reduction by a novel alkaliphilic, halotolerant, Bacillus sp. isolated from salt flat sediments of Soap Lake. Applied Microbiology and Biotechnology, 77, 927-934.
Pommerening-Roser A., Rath, G. and Koops, H. P., (1996). Phylodenetic diversity within the genus Nitrosomonas. Systematic and applied microbiology, 19, 344-351.
Prommer, H., Barry, D. A. and Davis, G. B., (2002). Modelling of physical and reactive processes during biodegradation of a hydrocarbon plume under transient groundwater flow conditions. Journal of Contaminant Hydrology, 59, 113-13.
Ramírez, M. E., Zapiéna, B., Zegarraa, H. G., Rojasc, N. G. and Fernández, L. C., (2008). Assessment of hydrocarbon biodegradability in clayed and previous weathered polluted soils. International Biodeterioration & Biodegradation, 63, 347-353.
Ramos-Padrón, E., Bordenave, S., Lin, S., Dong, X., Sensen, C. W., Fornier, J., Voordouw, G. and Gieg, L. M., (2011). Carbon and sulfur cycling by microbial communities in a Gypsum-treated oil sand tailings pond. Environmental Science Technology, 45, 439-446.
Raskin, L., Poulsen, L. K., Noguera, D. R., Rittmann B. E. and Stahl, D. A., (1994). Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Applied and Environmental Microbiology, 1241-1248.
Rees, G. N., Grassia, G. S., Sheehy, A. J., Dwivedi, P. P. and Patel, B. K. C., (1995). Desulfacinum infernurn gen nov., sp. nov., a Thermophilic Sulfate-Reducing Bacterium from a Petroleum Reservoir. International Journal of Systematic and Evolutionary Microbiology, 45, 85-89.
Ridgeway, H. F., Safarik, J., Phipps, D., Carl, P. and Clark, D., (1990). Identification and catabolic activity of well-derived gasoline-degrading bacteria and a contaminated aquifer. Applied and Environmental Microbiology, 56, 3565-3575.
Rifai, H. S., Borden, R. C., Wilson, J. T. and Ward, C. H., (1995). Intrinsic Bioattenuation for Subsurface Restoration., In Hinchee, R. E., Wilson, J. T., and Downey, D. C., editors. Intrinsic Bioremediation, CRC Press, Boca Raton, FL, 1-30.
Risdon, G. C., Pollard, S. J. T., Brassington, K. J., McEwan, J. N., Paton, G. I., Semple, K.T. and Coulon, F., (2008). Development of an analytical procedure for weathered hydrocarbon contaminated soils within a UK risk-based framework. Analytical Chemistry, 80, 7090-7096.
Schirmer M. and Butler, B. J., (2004). Transport behaviour and natural attenuation of organic contaminants at spill sites, Journal of Toxicology, 205, 173-79.
Schirmer M., Butler, B. J., Barker, J. F., Church, C. D. and Schirmer, K., (1999). Evaluation of biodegradation and dispersion as natural attenuation processes of MTBE and benzene at the borden field, 24, 6, 557-560.
Schirmer, M., Dahmke, A., Dietrich, P., Dietze, M., Godeke, S., Richnow, H. H., Schirmer, K., Weiss, H. and Teutsch, G., (2006). Natural attenuation research at the contaminated megasite Zeitz. Journal of Hydrology, 328, 393-407.
Schroder, I., Johnson, E., de Vries, S., (2003). Microbial ferric iron reductases. FEMS Microbiology, 27, 427-447.
Seagren, E. and Becker, J., (2002). Review of natural attenuation of BTEX and MTBE in groundwater. Practice periodical of hazardous, toxic, and radioactive waste management, 6, 156-172.
Siegrist, R. L., (2002). Fundamentals of In Situ Chemical Oxidation (ISCO), Teleconference of in situ treatment of groundwater contaminated with Non-aqueous Phase Liquids, Dec. 10-11, Chicago, IL.
Siegrist, R. L., Urynowicz, M. A., West, O. R., Crimi, M. L. and Lowe, K. S., (2001). Principle and practices of in situ chemical oxidation using permanganate. Battelle Press.
Smets, B. F. and Pritchard, P. H., (2003). Elucidating the microbial component of natural attenuation Current Opinion in Biotechnology, 14, 283-288.
Soga, K., Page, J. W. E. and Illangasekare, T. H., (2004). A review of NAPL source zone remediation efficiency and the mass flux approach. Journal of Hazardous Materials, 110, 13-27.
Suarez, M. P. and Rifai, H. S., (2002). Evaluation of BTEX remediation by natural attenuation at a coastal facility. Ground Water Monitoring & Remediation, 22, 62-77.
Surampalli, R. and Banerji, S., (2002). Long-term performance monitoring at natural attenuation site. Practice periodical of hazardous, toxic, and radioactive waste management, 6, 3, 173-176.
Sutherland, J., Adams, C. and Kekobad, J., (2004). Treatment of MTBE by air stripping, carbon adsorption, and advanced oxidation: Technical and economic comparison for five groundwaters. Water Research, 38, 193-205.
Ten, K. H., Kirienko, O. A. and Imranova, E. L., (2004). Effect of photosynthetic bacteria and compost on degradation of petroleum products in soil. Applied and Environmental Microbiology, 40, 214-219.
Towel, M. G., Bellarby, J., Paton, G. I., Coulon, F., Pollard, S. J. T., and Semple, K. T., (2011). Mineralisation of target hydrocarbons in three contaminated soils from former refinery facilities. Environmental Pollution, 159, 515-523.
Trindade, P. V. O., Sobral, L. G., Rizzo, A. C. L., Leite, S. G. F. and Soriano, A. U., (2005). Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: A comparison study. Chemosphere, 58, 515-522.
U. S. Environmental Protection Agency (EPA), (2001). A citizen’s guide to monitored natural attenuation. EPA 542-F-01-004.
U. S. Environmental Protection Agency (EPA), (1999). Monitored natural attenuation of petroleum hydrocarbons: U.S. EPA remedial technology fact sheet, EPA/600/F-98/601.
U. S. Environmental Protection Agency (EPA), (2004). Treatment Technologies for Site Cleanup: annual Status Report (Eleventh Edition). EPA-542-R-03-009.
U. S. Environmental Protection Agency (EPA), (2000). Engineered approaches to in situ bioremediation of chlorinated solvents: fundamentals and field applications, EPA 542-R-00-008
U. S. Environmental Protection Agency (EPA), (1996). BIOSCREEN: natural attenuation decision support system, user’s manual, version 1.3. EPA/600/R-96/087.
U. S. Environmental Protection Agency (EPA), (1998). BIOPLUME III: natural attenuation decision support system, user’s manual, version 1.0. EPA/600/R-98/010.
Uyttebroek, M., Vermeir, S., Wattiau, P., Ryngaert, A. and Springael, D., (2007). Characterization of cultures enriched from acidic polycyclic aromatic hydrocarbon-contaminated soil for growth on pyrene at low pH. Applied and Environmental Microbiology, 73, 3159-3164.
Vila, J. and Grifoll, M., (2009). Actions of Mycobacterium sp. strain AP1 on the saturated and aromatic-hydrocarbon fractions of fuel oil in a marine medium. Applied and Environmental Microbiology, 75, 6232-6239.
Wiedemeier, T. H., Rifai, H. S., Newell, C. J. and Wilson, J. T., (1999). Natural attenuation of fuels and chlorinated solvents in the subsurface. John Wiley & Sons Inc.: New York.
Wilson, J. T. and Kolhatkar, R., (2002). Role of natural attenuation in the life cycle of MTBE plumes. Journal of Environmental Engineering, 128, 9, 876-882.
Wu, Y. W., Huang, G. H., Chakma, A. and Zeng, G. M., (2005). Separation of petroleum hydrocarbons from soil and groundwater through enhanced bioremediation. Energy Sources, 27, 221-232.
Yang, Y. and McCarty, P. L., (2002). Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution. Environmental Science and Technology, 36, 15, 3400-3404.
行政院環境保護署,2008,自然衰減評估模式參考手冊。
張莉如,2004,以自然衰減整治受石油碳氫化合物污染之地下水,國立中山大學 環境工程研究所。
郭雅鈴,2006,應用監測式自然衰減法整治受石油碳氫化合物污染之地下水,國立中山大學 環境工程研究所。
曾依蕾,2005,柴油降解菌組合的最佳化,國立成功大學環境及工程系研究所。
經濟部工業局,2004,土壤與地下水污染整治技術手冊-生物處理技術。
廖文彬,1991,污染物在地下水之傳輸現象,地工技術雜誌,第28-37頁。
劉敏信、王奕森、韓國興、姚俊宇及莊煒志,2002,特定場址自然衰減潛勢分析研究。第一屆海峽兩岸土壤與地下水污染整治研討會,第227-234頁。
蔣立為,1991,地下水中有機污染物傳輸機制對人體健康影響及其整治技術之探討,礦業技術,第52-58頁。
鍾佳琪,2010,以垂直流式人工濕地處理含硫酸鹽廢水之研究,國立中山大學海洋環境及工程學系研究所。
中央氣象局全球資訊網,2011(http://www.cwb.gov.tw/)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔