(3.238.250.105) 您好!臺灣時間:2021/04/20 05:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴漢璋
研究生(外文):Han-Chang Lai
論文名稱:以化學洗滌去除漆包線製程排氣異味
論文名稱(外文):Chemical scrubbing of odorous gases emitted frommanufacturing plant of enamel insulated wire
指導教授:周明顯周明顯引用關係
指導教授(外文):Ming-Shean Chou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:92
中文關鍵詞:凡立水漆包線次氯酸鈉臭氧化學洗滌臭氧氧化二甲苯
外文關鍵詞:enamel insulated wirexylenesodium hypochloritevarnishchemical scrubbingozonation
相關次數:
  • 被引用被引用:12
  • 點閱點閱:493
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
漆包線(enamel insulated wire)製造業所使用的塗料凡立水(varnish)含有大量有機溶劑,易於製程產生揮發性有機物及異味。製程排氣通常以觸媒焚化處理,但處理後排氣仍有輕微異味,易引發工廠附近民眾異味陳情。焚化後排氣異味主要源自二甲苯及少量酮類,長期嗅聞會引發不悅及噁心。
本研究以化學洗滌法去除焚化排氣異味,氧化劑分別為次氯酸鈉與臭氧;另以液相實驗探討次氯酸鈉對二甲苯的氧化去除機制。
研究第一部分為「液相次氯酸鈉氧化二甲苯」。實驗以不同初始pH值、次氯酸鈉濃度及反應時間,批次氧化初始濃度為20 mg/L的二甲苯。結果顯示:次氯酸鈉水溶液在pH 6.5時,需要9倍的氧化劑量及長時間的反應,才有95%的二甲苯去除率;在pH<3時,混合反應120分鐘後,可將二甲苯氧化成苯羧酸(benzene carboxylic acids)的結晶態有機物,懸浮及沉澱於反應瓶底。
研究第二部分為「次氯酸鈉氧化串聯過氧化氫還原洗滌製程排氣」,過氧化氫主要作為排氣除氯用。以不同初始pH值、次氯酸鈉濃度,進氣二甲苯濃度25 - 65 mg/m3,進行批次洗滌試驗。結果顯示,在初始有效氯濃度1,500 mg/L及pH 6.5,過氧化氫初始濃度700 mg/L及pH > 12時,系統對二甲苯的平均去除率約為59 %。官能判定處理後排氣為無味至微量異味,較洗滌前及水洗後之異味低,經三點比較式嗅袋法檢測異味強度為無法察覺(ND)。以氣相層析質譜儀(GC/MS)分析,次氯酸鈉對非芳香烴之去除率為65.0 - 99.8%,但處理後排氣含微量含氯有機物。
研究第三部分為「臭氧氧化串聯活性碳吸附處理製程排氣」。控制進氣臭氧濃度在18-34 mg/m3及二甲苯濃度25 - 55 mg/m3。結果顯示,於不同臭氧接觸時間(0.15、0.3、0.45、0.6 min)下,二甲苯平均去除率均在35 %,以活性碳可去除臭氧及殘餘異味,去除率達99.9 %,進氣臭氧及二甲苯濃度與接觸時間對去除率的影響較小。在臭氧氧化二甲苯的產物中,可測得少量開環(ring cleavage)前驅物間二甲基酚(2,4-dimethyl phenol)及二甲苯開環後產物。
Organic solvents in varnish can easily cause volatile organic compounds (VOCs) and odorous problems in manufacturing plants of enamel insulated wire. In general, the related process exhaust gases are treated by catalytic incinerators. However, the slight odors in the incinerated exhausts may induce uncomfortable feels to the inhabitants in the vicinity of the plants. Main components of odors are reported to be xylenes and to a lesser extent ketones. This study intended to oxidize the odorous compounds by chemical scrubbing method with either sodium hypochlorite or ozone as an oxidant and hydrogen peroxide as a reducing agent for the elimination of residual chlorine or ozone emitted from the oxidation scrubber. An additional study was the oxidation of aqueous mixed xylenes by sodium hypochlorite.
The first part of the study was the chemical oxidation of aqueous xylenes by sodium hypochlorite. Results indicated that more than 95 % of 20 mg/L xylenes could be converted to some oxygenated hydrocarbons with an initial effective chlorine concentration of 180 mg/L at pH 6.5 over a prolonged reaction time of over 120 min. With pH < 3 and a reaction time of 120 min, xylenes could be oxidized to benzene carboxylic acid that precipitated as organic crystalline solids to the reactor bottom.
The second part was chemical scrubbing of the odorous gases emitted from the catalytic incinerator. Operation conditions were an effective chlorine concentration of 1,500 mg/L and pH 6.5 for the oxidative scrubbing liquor, and a hydrogen peroxide concentration of 700 mg/L and pH > 12 for the reductive one. Results indicated that on an average, around 59 % of the influent xylenes could be removed, and the scrubbed gas was nearly odorless. 65.0 - 98.5 % of the influent non-aromatic compounds could be removed with trace amounts of chlorinated compounds in the gas were detected.
The third one was the treatment of the odorous gases by using ozone as an oxidant and followed by activated carbon adsorption. 18 - 34 mg/m3 of ozone was added to the test gas with initial xylene concentrations of 25 - 55 mg/m3. Results indicated that only around 35 % of the added xylene was removed with ozone contact times of 0.15 - 0.6 min. Although 99.9 % of the residual ozone and odors were removed by the activated carbon, a longer operation time should be tested to verify the performance. Trace amounts of ring cleavage precursors of 2.4-dimethylphenol and ring cleavage products were found in the ozonized gas.
謝誌 II
摘要 III
Abstract V
目錄 VII
圖目錄 X
表目錄 XII
第一章 前言 1
1-1 研究背景及動機 1
1-2 研究目的及內容 2
1-2-1 化學洗滌去除漆包線製程排氣異味 2
1-2-2 液相次氯酸鈉化學氧化二甲苯 2
第二章 文獻回顧 3
2-1 揮發性有機物之定義與來源 3
2-2 臭味物質之定義與來源 3
2-3 漆包線表面塗裝製程簡介及排氣異味源概述 7
2-3-1 表面塗裝簡介及概述 7
2-3-2 漆包線製程簡介及概述 9
2-4 化學洗滌法原理 11
2-5 化學洗滌之方法及適用範圍 12
2-6 揮發性有機物及異味氣體處理及控制 18
2-7 化學洗滌氧化劑介紹 20
2-8 氧化二甲苯相關文獻探討 23
2-9 實際案例之文獻探討 26
第三章 實驗材料、設備及方法 28
3-1 研究方法及架構 28
3-2 實驗藥品 29
3-3 分析方法及儀器 29
3-4 實驗流程及設備 31
3-4-1 液相次氯酸鈉化學氧化二甲苯實驗 31
3-4-2 模擬實廠漆包線製程排氣及前處理 31
3-4-3 次氯酸鈉串聯過氧化氫化學洗滌製程排氣 32
3-4-4 臭氧氧化串聯活性碳吸附製程排氣 32
第四章 結果與討論 38
4-1 液相次氯酸鈉化學氧化二甲苯研究結果 38
4-1-1 次氯酸鈉濃度對氧化二甲苯之影響 39
4-1-2 次氯酸鈉初始pH值對氧化二甲苯之影響 42
4-1-3 反應前後之次氯酸鈉濃度及pH值變化探討 43
4-2 次氯酸鈉串聯過氧化氫化學洗滌製程排氣研究結果 45
4-2-1 空白洗滌試驗 45
4-2-2次氯酸鈉濃度對製程排氣去除之影響 46
4-2-3次氯酸鈉初始pH值對製程排氣去除之影響 49
4-2-4過氧化氫對排氣中氯氣的去除 50
4-2-5以最佳操作條件進行長時間洗滌 52
4-2-6以GC/MS分析排氣成份 53
4-2-7官能測定評估異味去除效果-三點比較式嗅袋法 55
4-3 臭氧氧化串聯活性碳吸附製程排氣研究結果 56
4-3-1 排氣與臭氧接觸時間及濃度對去除率之影響 56
4-3-2臭氧化學氧化二甲苯之產物 57
4-4 操作成本經濟效益評估 59
4-4-1 次氯酸鈉串聯過氧化氫化學洗滌法 59
4-4-2 臭氧氧化串聯活性碳吸附法 60
4-4-3 操作成本比較 62
第五章 結論與建議 63
5-1結論 63
5-1-1液相次氯酸鈉化學氧化二甲苯結論 63
5-1-2次氯酸鈉串聯過氧化氫化學洗滌製程排氣結論 63
5-1-3臭氧氧化串聯活性碳吸附製程排氣結論 64
5-2 結論 64
5-2-1 液相次氯酸鈉化學氧化二甲苯建議 64
5-2-2 次氯酸鈉串聯過氧化氫化學洗滌製程排氣建議 64
5-2-3 臭氧氧化串聯活性碳吸附製程排氣建議 64
參考文獻 65
附錄 68
[1]Environmental_Protection_Agency. The Clean Air Act Amendments of 1990 List of Hazardous Air Pollutants. Available: http://www.epa.gov/ttn/atw/orig189.html
[2]N. de Never, Air Pollution Control Engineering, second ed., 2000.
[3]中華民國行政院環境保護署. 台灣地區空氣污染排放量資料庫. Available: http://ivy2.epa.gov.tw/air-ei/
[4]周明顯, 臭味及揮發性有機物控制. 高雄市: 國立中山大學, 2007.
[5]N.-H. Kwok, et al., "Substrate effects on VOC emissions from an interior finishing varnish," Building and environment, vol. 38, pp. 1019-1026, 2003.
[6]M. Winkeler, "Magnet wire enamels-which one?," Electrical Insulation Magazine, IEEE, vol. 7, pp. 61-64, 1991.
[7]T. Yamamoto, et al., "Magnet wire," 1983.
[8]G.-z. e. a. Liu, "Determination of organic volatile in enamelled wires by the HS-GC-MC method," Electric Wire & Cable, vol. 2, pp. 28-30, 2004.
[9]廖本源, "漆包線用聚醯胺酸塗料之合成與特性研究," 碩士, 化學系, 私立中原大學, 2002.
[10]吳信賢 and 林樹榮, "光碟製程揮發性有機廢氣去除-高級氧化技術之應用," 化工資訊月刊, vol. 17, pp. 42-47, 2003.
[11]黃郁文, "含烯烴異味物質之化學氧化," 碩士, 環境工程研究所, 國立中山大學, 高雄市, 2009.
[12]吳信賢, et al., "TET-LCD製程揮發性有機廢氣處理高級氧化技術之應用," 產業環保工程實務技術研討會, pp. 75-89, 2003.
[13]S. Fukuzaki, "Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes," Biocontrol Science, vol. 11, pp. 147-157, 2006.
[14]K. Harada, "Behavior of hydrogen peroxide in electrolyzed anode water," Bioscience, biotechnology, and biochemistry, vol. 66, pp. 1783-1791, 2002.
[15]A. S. Hay, "OXIDATION OF P-XYLENE TO TEREPHTHALIC," 1984.
[16]S. Yamazaki, "Chromium (VI) Oxide-Catalyzed Benzylic Oxidation with Periodic Acid," Organic Letters, vol. 1, pp. 2129-2132, 1999.
[17]Robert Edgar Codborn, et al., "Liquid phase oxidation of halogenated ortho-xylenes," 6657068, 2 Dec 2003, 2003.
[18]Z.-S. Yao, et al., "Oxidation of Shenfu Coal with RuO4 and NaOCl," Energy & Fuels, vol. 24, pp. 1801-1808, 2010.
[19]Y. Sasson, et al., "Liquid-phase oxidation of deactivated methylbenzenes by aqueous sodium hypochlorite catalyzed by ruthenium salts under phase-transfer catalytic conditions," The Journal of Organic Chemistry, vol. 51, pp. 2880-2883, 1986.
[20]J. Chungsiriporn, et al., "Toluene removal by oxidation reaction in spray wet scrubber: experimental, modeling and optimization," ORIGINAL ARTICLE, vol. 28, pp. 1265-1274, 2006.
[21]H.-H. Cheng and C.-C. Hsieh, "Integration of chemical scrubber with sodium hypochlorite and surfactant for removal of hydrocarbons in cooking oil fume," Journal of hazardous materials, vol. 182, pp. 39-44, 2010.
[22]G.-x. Ma, et al., "Degradation of xylene in gas phase by ozone and UV light," Journal of Shandong Jianzhu University vol. 22, pp. 57-60, 2007.
[23]X. Yu, et al., "Influencing factors of xylene waste gas treatment by photocatalysis," Chinese Journal of Environmental Engineering, vol. 1, pp. 84-87, 2007.
[24]A. C. Gonzalez, et al., "Aqueous Chlorination Kinetics and Mechanism of Substituted Dihydroxybenzenes," 1996, pp. 48-62.
[25]A. J. Buonicore and W. T. Davis, Air pollution engineering manual: VAN NOSTRAND REINHOLD, FLORENCE, KY 41022-9949(USA), 1994.
[26]H. L. Bethel, et al., "Products of the gas-phase reactions of OH radicals with p-xylene and 1, 2, 3-and 1, 2, 4-trimethylbenzene: effect of NO2 concentration," The Journal of Physical Chemistry A, vol. 104, pp. 8922-8929, 2000.
[27]R. Volkamer, et al., "Primary and secondary glyoxal formation from aromatics: Experimental evidence for the bicycloalkyl-radical pathway from benzene, toluene, and p-xylene," The Journal of Physical Chemistry A, vol. 105, pp. 7865-7874, 2001.
[28]H.-C. Shin, et al., "Removal characteristics of trace compounds of landfill gas by activated carbon adsorption," Environmental Pollution, vol. 119, pp. 227-236, 2002.
[29]A. Daifullah and B. Girgis, "Impact of surface characteristics of activated carbon on adsorption of BTEX," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 214, pp. 181-193, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔