|
Banfield, R. E., Hall, L. O., Bowyer, K. W., & Kegelmeyer, W. P. (2007). A Comparison of Decision Tree Ensemble Creation Techniques, IEEE Transaction on Pattern Analysis and Machine Intelligence, 29(1), 173-180. Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classi_cation algorithms: Bagging, boosting and variants. Machine Learning, 36, 105-142. Bellman, R. E. (1961). Adaptive Control Processes. Princeton, NJ: Princeton Univ. Press. Bernardo, J. M., & Smith, A. F. M. (1994). Bayesian theory. New York, NY: Wiley. Bertoni, A., Folgieri, R., & Valentini, G. (2004a). Feature Selection Combined with Random Subspace Ensemble for Gene Expression based Diagnosis of Malignancies. Paper presented at the meeting of the 15th Italian Workshop on Neural Nets, Perugia, Italy. Bertoni, A., Folgieri, R., & Valentini, G. (2004b). Random subspace ensembles for the bio-molecular diagnosis of tumors, in Proc. NETTAB Workshop on Models and Metaphors from Biology to Bioinformatics Tools, 2004. Boser, B. E., Guyon, I. M. & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 144-152. Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140. Bruzzone, L. & Persello, C. (2009). A Novel Context-Sensitive Semisupervised SVM Classifier Robust to Mislabeled Training Samples, IEEE Trans. Geosci. Remote Sens., 47(7), 2142-2154. Buntine, W. (1990). A theory of learning classi_cation rules. Doctoral dissertation, School of Computing Science, University of Technology, Sydney, Australia. Camps-Valls, G. & Bruzzone, L. (2005). Kernel-based methods for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., 43 (6), 1351–1362. Camps-Valls, G. & Bruzzone, L. (2009). Kernel Methods for Remote Sensing Data Analysis. John Wiley & Sons, Ltd. Camps-Valls, G., Gómez-Chova, L., Calpe, J., Soria, E., Martín, J. D., Alonso, L. & Moreno, J. (2004). Robust support vector method for hyperspectral data classification and knowledge discovery, IEEE Trans. Geosci. Remote Sens., 42 (7), 1530–1542. Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Rojo-Alvarez, J. L. & Martinez-Ramon, M. (2008). Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection, IEEE Trans. Geosci. Remote Sens., 46 (6), 1822–1835. Chang, C.C. & Lin, C.J. (2001). LIBSVM: A Library for Support Vector Machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm Chen, B., Liu, H. & Bao, Z. (2008). Optimizing the Data-dependent Kernel under A Unified Kernel Optimization Framework, Pattern Recognition, 41(6), 2107-2119. Chen, I.-L., Li, C.-H., Kuo, B.-C. & Huang, H.-Y. (2010). Applying Optimal Algorithm to Data-dependent Kernel for Hyperspectral Image Classification, Proceedings of International Geosciences and Remote Sensing Symposium, 2808-2811 Christopher, J. W. (2004). Hyperspectral image classification with limited trainingdata samples using feature subspaces, Proc. SPIE, 5425, 170–181. Chuang, C.-H., Kuo, B.-C. & Wang, H.-P. (2008). Fuzzy fusion method for combining small number of classifiers in hyperspectral image classification, Proc. 8th Int. Conf. Intell. Syst. Des. Appl., 1, 26–28. Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273–297. Dietterich, T. G. (2000). Ensembles Methods in Machine Learning. Lecture Notes in Computer Science, 1857, 1-15. Drucker, H., Cortes, C., Jackel, L. D., LeCun, Y., & Vapnik, V. (1994). Boosting and other machine learning algorithms. Proceedings of the Eleventh International Conference on Machine Learning, 53-61. Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. Proceedings of the Thirteenth International Conference on Machine Learning, 148-156. Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. (2nd ed.). San Diego, CA: Academic. Ham, J., Chen, Y., Crawford, M. M. & Ghosh, J. (2005). Investigation of the random forest framework for classification of hyperspectral data, IEEE Trans. Geosci. Remote Sens., 43(3), 492–501. Ho, T. K. (1998a). The Random Subspace Method for Constructing Decision Forests. IEEE Transaction on Pattern Analysis and Machine Intelligence, 20(8), 832-844. Ho, T. K. (1998b). Nearest Neighbors in Random Subspaces. Proceedings of 2nd International Workshop Statistical Techniques in Pattern Recognition, 640-648. Hughes, G. F. (1968). On the Mean Accuracy of Statistical Pattern Recognition. IEEE Transaction on Information Theory, IT-14, 55-63. John, S. T. & Nello, C. (2004). Kernel Methods for Pattern Analysis. Cambridge University Press. Kong, E. B., & Dietterich, T. G. (1995). Error-correcting output coding corrects bias and variance. Proceedings of the Twelfth International Conference on Machine Learning, 313-321. Kuncheva, L. I. (2004). Combining Pattern Classifiers: Methods and Algorithms. Hoboken, NJ: Wiley & Sons. Kuo, B.-C., Hsieh, Y.-C., Liu, H.-C., & Chao, R.-M. (2005). A Random Subspace Method with Automatic Dimensionality Selection for Hyperspectral Image Classification. Proceedings of International Geoscience and Remote Sensing Symposium, 25-29. Kuo, B.-C., Pai, C.-H., Sheu, T.-W., & Chen, G.-S. (2004). Hyperspectral Data Classification using Classifier Overproduction and Fusion Strategies, Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 5, 2937-2940. Landgrebe, D.A. (2003), Signal Theory Methods in Multispectral Remote Sensing, John Wiley and Sons, Hoboken, NJ: Chichester. Li, C.-H., Lin, C.-T., Kuo, B.-C. & Chu, H.-S. (2010). An automatic method for selecting the parameter of the RBF kernel function to support vector machines, Proceedings of International Geosciences and Remote Sensing Symposium, 836-839. Maclin, R., & Opitz, D. (1997). An empirical evaluation of bagging and boosting. Proceedings of the Fourteenth National Conference on Arti_cial Intelligence. Providence, RI: AAAI Press. Melgani, F. & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens.,42 (8), 1778–1790. Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods (Technical Report CRG-TR-93-1). Department of Computer Science, University of Toronto, Toronto, Canada. Parzen, E. (1962). On Estimation of a Probability Density Function and Mode. Annals of Mathematical Statistics, 33(3), 1065-1076. Quinlan, J. R. (1996). Bagging, boosting, and C4.5. Proceedings of the Thirteenth National Conference on Arti_cial Intelligence, 725-730. Raudys, S. J. & Jain, A. K. (1991). Small Sample Size Effects in Statistical Pattern Recognition: Recommendations for Practitioners. IEEE Transaction on Pattern Recognition and Machine Intelligence, 13(3), 252-264. Silverman, B. W. (1985). Density Estimation for Statistics and Data Analysis, London, UK: Chapman & Hall. Skurichina, M. & Duin, R. P. W. (2001). Bagging and the Random Subspace Method for Redundant Feature Spaces. Proceeding of 2nd International Workshop Multiple Classifier Systems, 1-10. Skurichina, M. & Duin, R. P. W. (2002). Bagging, Boosting and the Random Subspace Method for Linear Classifiers. Pattern Analysis and Applications, 5(2), 121-135. Sun, S., Zhang, C., & Zhang, D. (2007). An Experimental Evaluation of Ensemble Methods for EEG Signal Classification. Pattern Recognition Letters, 28(15), 2157-2163. Tao, D., Tang, X., Li, X., & Wu, X. (2006). Asymmetric Bagging and Random Subspace for Support Vector Machines-based Relevance Feedback in Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(7), 1088-1099. Tarabalka, Y., Benediktsson, J. A. & Chanussot, J. (2009). Spectral–Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques. IEEE Trans. Geosci. Remote Sens., 47(8), 2973-2987. Xiong, H. L., Swamy, M. N. S., Omair, M. & Ahmad. (2005). Optimizing the kernel in the empirical feature space, IEEE Trans. Neural Networks 16 (2) 460–474. Yang, J-M., Kuo, B-C., Yu,P-T. & Chuang, C-H. (2010). A Dynamic Subspace Method for Hyperspectral Image Classification, IEEE Transaction on Geosciences and Remote Sensing, 48(7), 2840-2853.
|