跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/17 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳俊逸
研究生(外文):WU, CHUN-YI
論文名稱:以專利本體論工程為基之智財服務防禦式決策支援系統
論文名稱(外文):Using Patent Ontology Engineering to Enable Intellectual Property Defense-based Support System
指導教授:張瑞芬張瑞芬引用關係
指導教授(外文):Amy J.C. Trappey
口試委員:蔡明誠彭心儀林榮慶張力元陳省三
口試日期:2011-5-13
學位類別:博士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:123
中文關鍵詞:本體論工程詞彙解析重疊式分群專利侵害鑑定智慧財產
外文關鍵詞:Ontology EngineeringPhrases ExtractionOverlap ClusteringPatent InfringementIntellectual Property
相關次數:
  • 被引用被引用:0
  • 點閱點閱:759
  • 評分評分:
  • 下載下載:101
  • 收藏至我的研究室書目清單書目收藏:3
二十一世紀是知識經濟的時代,針對公司的無形資產,技術發展與創新是相當重要的知識資本;而技術的擁有者事先一定會對所擁有之技術進行必要的智慧財產權保護,以免遭到侵害後,無法受到法律的保障。專利權是智慧財產權保護的重要一環,它的目的在鼓勵、保護、善用發明與創作,以促進產業發展。從2009-2010年全球競爭力報告顯示,由於瑞士在研發上有相對高的投資且研發的成果被妥善商業化,且每百萬個居民即擁有多達148篇專利,所以瑞士取代了美國成為全球最具競爭力國家。
近年來跨國專利申請與通過件數快速增加,從2004至2006年台灣跨國專利發明數量已佔台灣總專利發明數量的 52.2%,這反映台灣與全球專利研發益趨緊密。如此大量的智慧財產累積,也造就台灣與國外大廠的專利糾紛陸續發生,其所支付的專利授權金額亦是逐年攀升。
無論原告或被告,專利訴訟皆應由被動觀念升級到主動觀念,甚至是預先反應的層次。但在專利侵害攻防方面,除了基本專利搜尋檢索之外,運用先進資訊技術與決策模式進行專利侵害分析與決策支援系統之發展仍相當缺乏。
本研究提出智財服務防禦式決策支援系統,其主軸為以專利本體論工程為基之自動技術群聚與侵害分析。在本體論工程中,主要針對申請專利範圍解析與文件特徵分析,以利領域知識之本體論呈現。在專利技術群聚與侵害分析方法論中,本研究提出專利有效性分析與侵害鑑定前案分析,發展出改善式重疊式分群演算法,利用該演算法進行專利技術群聚及系爭專利之前案與比對專利之檢索認定。亦即,若企業提出反控侵害時,針對所搜尋到的比對專利,設計侵害鑑定比對介面,協助智財人員快速比對全要件原則、均等論與先前技術阻卻等判斷法則。
因此,本研究發展並整合專利本體論與侵害鑑定雛型系統,以資訊系統輔助並引導智財人員系統化解析申請專利範圍,並提供一個以構成要件為基礎的自動侵害比對功能。將專利構成要件與結構關係當作事實,而全要件原則與均等論當作規則,進行事實規則推論。搭配適時之人機介面,提供企業智財服務之防禦式決策支援,協助專利有效性評估與侵害鑑定比對。
In a knowledge based economy, intangible assets (e.g., intellectual properties and innovative technology) are important to the development of enterprise knowledge capital. Patent aims to encourage and protect the use of invention and creation to promote industrial development under global legal rules and orders. Thus, patents are the most critical means of maintaining legal rights of intellectual properties (IPs). The 2009-2010 global competitiveness report indicates that Switzerland became the most competitive nation in the world, because of its relatively high R&D investment and commercialization. Switzerland‘s per million inhabitants own 148 patents, which is the highest in the world, and the number well reflect the R&D capability of a country.
In recent decade, Taiwan industry has also focused on the internationalization of R&D with their foreign patents reaching more than 52.2% of total granted patents (well above global average of 15.41%). The increasing patents, applied and approved, attribute to the higher chance of patent litigation and legal disputes. Furthermore, the cost of patent licensing is also growing rapidly over the recent years. Regardless being plaintiffs or defendants, the concept of patent litigation should be upgraded from passive to active and even proactive level. However, other than available strait forward patent search and meta-analysis IT tools, we still lack advanced analytical and decision support methodology and systems for handling patent litigation and protecting IPs.
This research will develop patent ontology engineering approach, the improved overlapping patent clustering method and patent infringement analysis. The ontology engineering approach analyzes patent claims structure and extracts patent characteristics for technical domain schema construction. Further, the research will use the developed methods to implement an analytical and decision support prototyping system to analyze related patents and compare their claim elements based on the patent ontology, infringement rules and facts. After the development of the methodology and system, the research will study well known patent litigation cases (e.g., HTC vs. Apple, LGD vs. AUO) and adopt the proposed methods and prototyping system for the case analysis to demonstrate the effectiveness and applicability of the research solutions toward the real legal matter.
中文摘要 1
英文摘要 2
致謝辭 3
目錄 4
圖目錄 6
表目錄 9
1. 緒論 12
1.1 研究背景 12
1.2 研究動機 14
1.3 研究目的 16
1.4 研究限制 16
1.5 研究架構 17
2. 文獻探討 18
2.1 本體論 18
2.1.1 本體論工程 20
2.2 文件詞彙解析 23
2.3 分群演算法 25
2.4 專利侵害鑑定 30
2.4.1 專利侵害態樣 31
2.4.2 專利之均等論 32
2.4.3 侵害鑑定流程 33
3. 研究方法論 36
3.1 申請專利範圍解析 39
3.1.1 申請專利範圍之請求項 41
3.1.2 請求項之獨立項與附屬項 43
3.1.3 申請專利範圍之撰寫句法 44
3.2 專利本體論工程 49
3.3 專利詞彙解析評估 57
3.4 改善式重疊式分群 60
3.5 專利侵害鑑定方法論 64
4. 實例驗證 73
4.1 專利本體論建置與詞彙解析 73
4.2 前案專利搜尋 87
4.3 專利有效性分析 90
4.4 比對專利搜尋 94
4.5 專利侵害鑑定 96
5. 結論 104
參考文獻 106
附錄 112
Reference in English Paper
1. Abramoff, M. D., Magelhaes, P. J., and Ram, S. J., 2004, “Image processing with imageJ,” Biophotonics International, Vol. 11, No. 7, pp. 36-42.
2. Aggrawal, C. C., and Yu, P. S., 2000, “Finding generalized projected clusters in high dimensional spaces,” Proceedings of the 2000 ACM SIGMOD international conference on Management of data, Dallas, New York: ACM Press, pp.70-81.
3. Al-Kofahi, K., Tyrrell, A., Vachher, A., Travers, T. and Jackson, P., 2001, “Combining multiple classifiers for text categorization,” Proceedings of the tenth international conference on Information and Knowledge Management, Atlanta, Georgia, USA, pp.97-104.
4. Berkhin, P., 2002, “A survey of clustering data mining techniques,” Technical Report, Accrue Software, Inc.
5. Boinee, P., Angelis, A. D., and Milotti, E., 2003, “Automatic classification using self-organising neural networks in astrophysical experiments,” Computing Research Repository - CORR.
6. Borst, P., Akkermans, H., and Top, J., 1997, “Engineering ontologies,” International Journal of Human-Computer Studies, Vol. 46, No. 2-3, pp. 365-406.
7. Chandrasekaran, B., Josephson, R. J. and Benjamins, V. R., 1999, “What are ontologies, and why do we need them?” IEEE Intelligent Systems, Special Issue on Ontologies, Vol. 14, pp. 20-26.
8. Chen, B., Tai, P.C., Harrison, R., and Pan, Y., 2005, “Novel hybrid hierarchical k-means clustering method (H-K-means) for microarray analysis,” Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference Workshops (CSBW’05).
9. Chen, S. S., K.W. Ho, IK K. H. and Lee C. F., 2002, “How does strategic competition affect firm values? A study of new product announcements,” Financial Mangement, Vol. 31, No. 2, pp. 67-84, USA.
10. Chen, Y. L. and Hu, H. L., 2006, “An overlapping cluster algorithm to provide non-exhaustive clustering,” European Journal of Operational Research, Vol. 173, pp. 762-780.
11. Chesbrough, H. W., and Smith, E., 2000, “Patent & License Exchange: Enabling A Global IP Marketplace,” Harvard Business School.
12. Church, K. W. and Hanks, P., 1990, “Word association norms, mutual information and lexicography,” Computational Linguistics, Vol. 17, No. 1, pp. 22-29.
13. Deng, Z., Lev, B., and Narin, F., 1999, “Science and technology as predictors of stock performance,” Financial Analysts Journal, Vol. 55, No. 3, pp. 20-32.
14. Ester, M., Kriegel, H. P., Sander, J., and Xu, X., 1996, “A Density-Based A1gorithm for Discovering C1usters in Large Spatial Databases With Noise,” Published in Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96).
15. Garai, G., and Chaudhuri, B. B., 2004, “A novel genetic algorithm for automatic clustering,” Pattern Recognition Letters, Vol. 25, pp. 173-187.
16. Gruber, T. R., 1993, “A translation approach to portable ontology specifications,” Knowledge Acquisition, Vol. 5, pp. 199-220.
17. Grüninger, M. and Fox, M. S., 1995, “Methodology for the design and evaluation of ontologies,” Department of Industrial Engineering University of Toronto, Canada.
18. Guarino, N., 1998, “Formal ontology and information system,” Proceedings of Formal Ontology in Information Systems, Trento, Italy, pp. 6-8.
19. Guha, S., Rastogi, R., and Shim, K., 1998, “CURE: An efficient clustering algorithm for large databases,” ACM SIGMOD International Conference on Management of Data, Seattle, WA, USA.
20. Han, J. and Kamber, M., 2000, “Data mining: concepts and techniques,” Morgan Kaufman Publishers.
21. Huang, C.-J., Trappey, A.J.C., and Wu, C.-Y., 2008, “Building a formal ontology engineering methodology for knowledge definition and representation in design knowledge management,” Proceedings of Management International Conference, Barcelona, Spain, Nov. 26-29.
22. Huang, J. Z., Ng, M. K., Rong, H., and Li, Z., 2005, “Automated variable weighting in k-mean type clustering”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 5, pp. 657-668.
23. Jiang G., Ogasawara, K., Endoh, A., and Sakurai, T., 2003, “Context-based ontology building support in clinical domains using formal concept analysis,” International Journal of Medical Informatics, Vol. 71, pp. 71-81.
24. Karp, P. D., 1996, “Database links are a foundation for interoperability,” TIBECH, Vol. 14, pp. 273-279.
25. Knublauch, H., Dameron O., and Musen, M.A., 2004, “Weaving the biomedical semantic web with the protégé OWL plugin,” Proceedings of the 1st International Workshop on Formal Biomedical Knowledge Representation.
26. Khan L., McLeod D., and Hovy E., 2004, “Retrieval effectiveness of an ontology-based model for information selection,” The VLDB Journal, Vol. 13, pp.71-85.
27. Li, S.-T., and Hsieh, H.-C., 2003, “Managing Operation Knowledge for the Metal Industry,” Proceedings of I-KNOW, Graz, Austria.
28. Liu, T., Liu, S., Chen, Z., and Ma, W.-Y., 2003, “An evaluation on feature selection for text clustering,” Proceedings of the Twentieth International Conference on Machine Learning (ICML), Washington, DC.
29. Mack, R. and Hehenberger, M., 2002, “Text-based knowledge discovery: search and mining of life-sciences documents”, Drug Discovery Today (DDT), Vol. 7, No. 11, pp. 89-98.
30. MacQueen, J., 1967, “Some methods for classification and analysis of multivariate observations,” Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, pp. 281-297.
31. Maedche, A. and Staab, S., 2000, “Discovering conceptual relations from text,” Proceedings of European Conference Artificial Intelligence (ECAI-00), IOS Press, Amsterdam, pp. 321–325.
32. Noy, N. F., and McGuinness, D. L., 2001, “Ontology development 101: A guide to creating your first ontology,” Stanford Knowledge Systems Laboratory Technical Report KSL-01-05. March.
33. Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., and Swartout, W.R., 1991, “Enabling technology for knowledge sharing,” AI Magazine, Vol. 12, pp. 36-56.
34. Salton, G. and Buckley, C., 1988, “Term-weighting approaches in automatic text retrieval,” Information Processing & Management, Vol. 24, No. 5, pp.513-523.
35. Salton, G. and McGill, M.J., 1983, “Introduction to modern information retrieval,” McGraw-Hill Book Company, New York.
36. Sedding, J., and Kazakov, D., 2004, “WordNet-based text document clustering.” Proceedings of the Third Workshop on Robust Methods in Analysis of Natural Language Data (ROMAND), pp.104-113, Geneva.
37. Smith, B., and Welty, C., 2001, “Ontology: Towards a new synthesis,” Proceedings of the international conference on Formal Ontology in Information System (FOIS), pp. 3-9.
38. Tamma, V., Phelps, S., Dickinson, I. and Wooldridge, M., 2005, "Ontologies for supporting negotiation in e-commerce," Engineering Applications of Artificial Intelligence, Vol. 18, pp.223-236.
39. Trappey, C.V., Trappey, A.J.C., and Wu, C.-Y., 2010, “Clustering patents using non-exhaustive overlaps,” Journal of Systems Science and Systems Engineering, Vol. 19, No. 2, pp. 162-181.
40. Uschold, M. and Gruninger, M., 1996, “Ontologies: principles, methods and application,” Knowledge Engineering Review, Vol. 11, No. 2.
41. Sugumaran V. and Storey V. C., 2003, “A semantic-based approach to component retrieval,” The DATA BASE for Advances in Information Systems. Vol. 34, No.3, pp.8-24.
42. Yang Y. and Pedersen J. O., 1997, “A comparative study on feature selection in text categorization,” Proceedings of the International Conference on Machine Learning, pp. 412-420.

Reference in English Book
43. Baeza-Yates, R. and Ribeiro-Neto, B., 1999, “Modern Information Retrieval,” Addison Wesley, ISBN: 020139829X.
44. Hartigan, J. A., 1975, “Clustering Algorithms,” John Wiley & Sons Inc, ISBN: 047135645X.
45. Jain, A. K., and Dubes, R. C., 1988, “Algorithms for Clustering Data,” Prentice Hall College Div, ISBN: 013022278X.

Reference in Chinese Paper & Book
46. 王忠祥,2005,應用本體論設計與建置PDF格局的知識文件摘要產生器之原型研究,國立台灣科技大學,機械工程系,碩士論文。
47. 王怡婷,2009,可適化協同專案管理系統建置,亞洲大學,資訊科學與應用學系,碩士論文。
48. 王聖順,2005,專利文件之專利技術特性及功能知識分析法,國立臺灣科技大學,機械工程系,碩士論文。
49. 呂雪惠,2004,新一代以語意為基礎的Wiki系統,國立台灣科技大學,資訊工程系,碩士論文。
50. 周延鵬, 2006, 虎與狐的智慧力-智慧資源規劃九把金鑰,天下文化,ISBN:986417651X。
51. 柯文周,2004,建構以專家系統之推論引擎為基之工作流程管理系統,國立清華大學,工業工程與工程管理學系,碩士論文。
52. 柯燕輝,2002,課堂上網路學習情意評量管理機制,國立臺灣師範大學,工業教育學系,在職進修碩士班。
53. 胡訓誠,2003,應用本體論設計ISO文件管理資訊系統,國立高雄第一科技大學,資訊管理系,碩士論文。
54. 陳彥均,2007,發展使用者認知為基礎的知識本體應用於資訊檢索系統,中原大學,資訊管理學系,碩士論文。
55. 楊紹明,2004,建構語意網規則導向之電子契約自動化協商機制之研究,中原大學,資訊管理學系,碩士論文。
56. 葉文權,2005,應用本體論建構財務報表分析專家系統,國立高雄第一科技大學,資訊管理系,碩士論文。
57. 廖河慶,2009,企業知識管理模型之建置-以信用卡授權作業為例,大同大學,資訊經營研究所,碩士論文。
58. 鄭如伶,2008,以網路購物為背景的語意化同儕網路知識分享系統,大同大學,資訊工程研究所,碩士論文。
59. 鍾正男,2004,以知識本體為基礎的語意查詢系統之研究-以圖書館為例,大葉大學,資訊管理學系,碩士論文。
60. 簡嘉建,2003,建構在語意網上之分散式電子化學習物件分享機制:以「物料需求規劃」之學習為例,國立清華大學,工業工程與工業管理所,碩士論文。
61. 蘇嶸學,2006,以本體為基礎的內容感知系統應用於電子型錄管理,中原大學,資訊管理學系,碩士論文。

Online Resource
62. 1997, 1998, 1999 Arthur D. Little Benchmarking studies, 2000est, Accessed 05/30/2011. [Online]. Available: http://www.yet2.com/app/insight/insight/20000830_debleser#1004375
63. Cycorp, Inc., Accessed 05/30/2011. [Online]. Available: http://www.cyc.com/
64. European Patent Organization (EPO), Accessed 05/30/2011. [Online]. Available: http://www.epo.org/
65. Pennwalt Corp. v. Durand-Wayland, Inc., 1987, Federal Circuit, 833 F. 2d 931, Accessed 05/30/2011. [Online]. Available: http://openjurist.org/833/f2d/931/pennwalt-corporation-v-durand-wayland-inc
66. Ross Winans v. Adam, Edward, and Talbot Denmead, 1853, 56 U.S. 330, Accessed 05/30/2011. [Online]. Available: http://openjurist.org/56/us/330/winans-v-adam-edward-and-talbot-denmead
67. Science & Technology Policy Research and Information Center (STPI), Accessed 05/30/2011. [Online]. Available: http://www.stpi.narl.org.tw/STPI/index.htm
68. Taiwan Intellectual Property Office (TIPO), Accessed 05/30/2011. [Online]. Available: http://www.tipo.gov.tw/ch/
69. Taiwan Intellectual Property Training Academy (TIPA), Accessed 05/30/2011. [Online]. Available: http://www.tipa.org.tw/p3_1-1.asp?nno=74
70. United States Patent and Trademark Office (USPTO), Accessed 05/30/2011. [Online]. Available: http://www.uspto.gov/
71. Visual Thesaurus, Accessed 05/30/2011. [Online]. Available: http://www.visualthesaurus.com/
72. WordNet, Accessed 05/30/2011. [Online]. Available: http://wordnetweb.princeton.edu/perl/webwn
73. World Economic Forum (WEF), Accessed 05/30/2011. [Online]. Available: http://www.weforum.org/en/initiatives/gcp/Global%20Competitiveness%20Report/index.htm
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top