跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/29 23:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃衍善
研究生(外文):Huang, Yen-Shan
論文名稱:Demand-Driven Disassembly Plan for a Robust Closed-Loop Supply Chain System
論文名稱(外文):穩健閉迴路供應鏈中的需求導向拆解規劃
指導教授:王小璠王小璠引用關係
指導教授(外文):Wang, Hsiao-Fan
口試委員:蘇哲平何佩勳
口試日期:2011-5-31
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:96
中文關鍵詞:需求導向拆解規劃閉迴路供應鏈壽終產品再利用方式穩健規劃
外文關鍵詞:Demand-Driven Disassembly PlanningClosed-Loop Supply ChainEnd-of-Life Recovery OptionsRobust Programming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:516
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
In the wake of imminent government regulations and consumer awareness of environment-friendly manufacturing, the manufacturers must take the responsibility of the used products. Closed-loop supply chain system, which integrates the forward and reverse logistics, is a desirable policy for retaining recoverable resources and extending life cycle of products. In this thesis, we propose a mixed-integer programming model to contend a disassembly planning problem under a closed-loop supply chain system with multi-period, multiple products, and hierarchical product’s structure. The objective of the model is to determine the optimal volume and timing of each type of end-of-life (EOL) products to be recycled from end-users. The recycled products are then disassembled to be reused, remanufactured, repaired, or disposed. The optimal disassembly and recovery strategies are also determined under the constraints of capacities and satisfying demand for products. Furthermore, the proposed model accounts for the market mechanism under a closed-loop environment, including timing, quality and quantity issues of recycled EOL products. The numerical results of the illustrative example show the validity of the model being able to provide the required information for policy making.
However, due to the uncertainty exists in the proposed closed-loop supply chain system, a series of scenario analysis is conducted to investigate the sensitivities of periodic demands, quality of recycled product, and timing of product return, and also the resulted impacts on optimal strategy. The results suggest that all of these factors are critical and substantial to influence the decision. Therefore, to mitigate the difficulty of decision-making resulted from the uncertainty in these factors, we propose a two-stage robust programming approach to determine a robust solution that provides the most adequate strategy by considering future scenarios at the beginning with a decision-maker’s attitude towards risk. The first stage decision is to determine a compromised solution that is close to optimal solution for every scenario while remaining a certain level of infeasibility of constraints, such as unsatisfied demand. Afterward, when the outcome of scenario realizes, the second stage decision, for example, inventory volume, is conducted to become a buffer for absorbing or mitigating uncertainty impacts.
Furthermore, the computational results confirmed the trade-off relationship between solution robustness and model robustness, which are also kernel results of the robust model apart from expected profit. Finally, a contingency plan of a robust decision is developed, providing higher profit when shortage and excessive of procurement are both allowed.

現今隨著政府環境法規的要求以及消費者環境意識的興起,產品製造商必須負起將產品回收的責任。閉迴路供應鏈系統是在此議題下的一個值得採用的策略。它整合了正向及逆向物流,藉由回收再利用,保留可再使用的資源,並且延長產品的生命週期。在本論文中,我們針對一個閉迴路供應鏈系統提出一個求解需求導向拆解規劃問題的混整數規劃模型,同時考慮多期、多產品、以及產品的階層結構。模型的目的是決定從最終使用者手中各種壽終產品的回收時間及數量。回收產品進而被拆解以做為再使用、再製造、維修、與丟棄等再利用方式。同時,模型也決定這些回收產品的最佳拆解及再利用策略,且滿足產能與產品需求的限制。此外,本論文所提出的模型考量了在閉迴路環境中的一些市場機制,例如回收產品時間、品質、及數量的議題。經過數據測試讓模型獲得驗證,且所提供的結果具有效性,提供決策者足夠的資訊。
然而,由於在本研究所提出的閉迴路架構中,產品需求、回收產品品質、以及回收時間存在著許多不確定性,因此我們進行一系列的情境分析來確認這些不確定性因素的敏感度以及它們對於最佳策略的影響。而結果顯示,其中所有的參數皆顯著地改變了決策。因此,為了減緩不確定性造成的決策困難,本論文一開始即考慮可能的未來情境,在決策者對於風險的偏好態度下,以二階段穩健規劃方法來決定一個最適當的穩健決策。第一階段目的在於找出一個折衷的決策,以期能夠在所有情境中接近最佳解,同時允許一定程度的不可行性,例如需求的不滿足。而當情境確定發生的當下,決策者選用適合此情境的第二階段決策,並成為一個緩衝機制以吸收或減低不確定性所造成的影響。另外,測試結果也顯現出解穩健性與模型穩健性中的權衡關係。最後,當超額採購與緊急採購允許的情況下,本論文提供了一延伸的模型以求解應變計畫下的穩健決策,其利潤也獲得了改進。

TABLE of CONTENTS ii
ABSTRACT v
中文摘要 vii
ACKNOWLEDGEMENT viii
FIGURE & TABLE CAPTIONS ix
LIST of NOTATIONS xiii
CHAPTER 1 INTRODUCTION 1
1.1 Research Background 1
1.2 Motivation for Current Research 2
1.3 Problem Statement and Research Objectives 5
1.4 Organization of Thesis 6
CHAPTER 2 LITERATURE REVIEW 8
2.1 Introduction 8
2.2 Closed-Loop Supply Chain (CLSC) 8
2.2.1 The Activities in a Closed-Loop Supply Chain 10
2.2.2 Life Cycle Impacts on Quantity and Quality of the Returned Products 11
2.3 End-of-Life & End-of-Use Recovery Selection 13
2.4 Disassembly 15
2.4.1 Design for Disassembly Representation 18
2.4.2 Demand-driven Disassembly Planning 22
2.5 Robust Optimization 23
2.5.1 Measure of Robustness 25
2.5.2 Two-Stage Robust Programming 25
2.6 Concluding Remarks 29
CHAPTER 3 MODEL FORMULATION IN A CERTAIN ENVIRONMENT 30
3.1 System Boundary and Framework 30
3.2 Mathematical Representation of Products Structure 33
3.2.1 Mathematical Representation of Products Structure 33
3.2.2 Disassembly Configurations for Modules 35
3.3 The Recovery Options 36
3.4 Kernels of Closed-Loop Mechanism 36
3.5 Mathematical Model 40
3.5.1 Notations 40
3.5.2 The Mixed-Integer Programming Model 45
3.6 An Illustrative Example in Certain Environment 49
3.6.1 Description of the Input Data 49
3.6.2 Numerical Results 55
3.6.3 Scenario Analysis 58
3.6.4 Discussion 65
3.7 Concluding Remarks 65
CHAPTER 4 TWO-STAGE ROBUST PROGROMMING IN AN UNCERTAIN ENVIRONMENT 66
4.1 The Framework of Robust Optimization for the Proposed Model 66
4.2 Two-Stage Robust Programming 68
4.2.1 Uncertain Parameters Description 71
4.2.2 Classification of Decision Variables at Each stage 71
4.2.3 Measures of Robustness 72
4.2.4 The Proposed Robust Model 74
4.3 An Illustrative Example in Uncertain Environment 76
4.3.1 Description of the Uncertain Parameters 76
4.3.2 Numerical Results 77
4.3.3 Trade-Off between Solution Robustness and Model Robustness 82
4.4 Extension of the Proposed Robust Model 84
4.4.1 Observation of the Robust Outcome 84
4.4.2 Extended Robust Model 86
4.4.3 Numerical Results 88
4.5 Concluding Remarks 90
CHAPTER 5 CONCLUSION AND FUTURE RESEARCH 91
REFERENCE 93

1. Barba-Gutierrez, Y., Adenso-Diaz, B., Gupta, S. M., “Lot Sizing in Reverse MRP for Scheduling Disassembly.” International Journal of Production Economics, Vol. 111, pp. 741–751, 2008.
2. Brennan, L., Gupta, S. M., Taleb, K. N., “Operations Planning Issues in an Assembly/Disassembly Environment.” International Journal of Operations and Production Management, Vol. 14, pp. 57–67, 1994.
3. Bufardi, A., Gheorche, R., Kiritsis, D., Xirouchakis, P., “Multicriteria Decision-aid Approach for Product End-of-Life Alternative Selection.” International Journal of Production Research, Vol. 15, No. 16, pp. 3139-3157, 2004.
4. Cox Jr., W. E., “Product Life Cycles as Marketing Models.” Journal of Business, Vol. 40, No. 4, 1967.
5. European Union, “Directive 2002/96/EC of the European Parliament and of the Council on Waste Electrical and Electronic Equipment”, 2003.
6. Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., Van der Laan, E., van Nunen, J., Van Wassenhove, L. N., “Quantitative Models for Reverse Logistics: a Review.” European Journal of Operational Research, Vol. 103, pp. 1–17, 1997.
7. Guide Jr., V. D. R., “Scheduling with Priority Dispatching Rules and Drum-Buffer-Rope in a Recoverable Manufacturing System. International Journal of Production Economics, Vo. 53, pp. 101-116, 1997.
8. Guide Jr., V. D. R., Jayaraman, V., Srivastava, R., Benton, W. C., “Supply-Chain Management for Recoverable Manufacturing Systems.” Interfaces, Vol. 30, No. 3, pp.125-142, 2000.
9. Guide Jr., V. D. R., Van Wassenhove, L., “Closed-Loop Supply Chains: An Introduction to the Feature Issue (Part 1)” Production and Operations Management, Vol. 15, No. 3, pp. 345-350, 2006.
10. Guide Jr., V. D. R., Van Wassenhove, L., “The Evolution of Closed-Loop Supply Chain Research.” Operations Research, Vol. 57, No. 1, pp. 10-18, 2009.
11. Guide Jr., V. D. R., Teunter, R. H., Van Wassenhove, L., “Matching Demand and Supply to Maximize Profits from Remanufacturing.” Manufacturing & Service Operations Management, Vol. 5, No. 4, pp. 303-316, 2003.
12. Gungor, A., Gupta, S. M., “Issues in Environmentally Conscious Manufacturing and Product Recovery: a Survey.” Computers & Industrial Engineering, Vol. 36, pp. 811–853, 1999.
13. Gupta, S. M., Kongar, E., “Disassembly to Order System under Uncertainty.” Omega, Vol. 34, pp. 550-561, 2006.
14. Homem de Mello, L. S., Sanderson, A. C., “AND/OR Graph Representation of Assembly Plans.” IEEE Transactions on Robotics and Automation, Vol. 6, pp. 188-199, 1990.
15. Ilgin, M. A., Gupta, S. M., “Environmentally Conscious Manufacturing and Product Recovery (ECMPRO): A Review of the State of the Art.” Journal of Environmental Management, Vol. 91, pp. 563-591, 2010.
16. Inderfurth, K., Langella, I. M., “Heuristics for Solving Disassemble-to-Order Problems with Stochastic Yields.” OR Spectrum, Vol. 28, pp. 73–99, 2006.
17. Jayaraman, V., Guide, V.D.R., Srivastava, R., “A Closed-Loop Logistics Model for Remanufacturing.” Journal of Operational Research Society, Vol. 50, pp. 497-508, 1999.
18. Jorjani, S., Leu, J., Scott, C., “Model for the Allocation of Electronics Components to Reuse Options.” International Journal of Production Research, Vol. 42, pp. 1131–1145, 2004.
19. Jun, H. B., Cusin, M., Kiritsis, D., Xirouchakis, P., “A Multi-objective Evolutionary Algorithm for EOL Product Recovery Optimization: Turbocharger Case Study.”, International Journal of Production Research, Vol. 45, No. 18–19, pp. 4573–4594, 2007.
20. Kim, H. J., Lee, D. H., Xirouchakis, P., “Disassembly Scheduling: Literature Review and Future Research Directions.” International Journal of Production Research, Vol. 45, No. 18–19, pp. 4465–4484, 2007.
21. Kim, H. J., Lee, D. H., Xirouchakis, P., Zust, R., “Disassembly Scheduling with Multiple Product Types.” CIRP Annals – Manufacturing Technology, Vol. 52, pp. 403–406, 2003.
22. Kim, K., Song, I., Kim, J., Jeong, B., “Supply Planning Model for Remanufacturing System in Reverse Logistics Environment.” Computers & Industrial Engineering, Vol. 51, pp. 279-287, 2006.
23. Kongar, E., Gupta, S. M., “A Multi-Criteria Decision Making Approach for Disassembly-to-Order systems.” Journal of Electronics Manufacturing, Vol. 11, No. 2, pp. 171-183, 2002.
24. Kongar, E., Gupta, S. M., “Disassembly-to-Order System under Uncertainty.” Omega, Vol. 34, pp. 550-561, 2006.
25. Krikke, H. R., van Harten, A., Schuur, P .C., “On a Medium Term Product Recovery and Disposal Strategy for Durable Assembly Products.” International Journal of Production Research, Vol. 36, pp. 111–140, 1998.
26. Kumar, V., Shirodkar, P. S., Camelio, J. A., Sutherland, J. W., “Value Flow Characterization During Product Life Cycle to Assist in Recovery Decisions.” International Journal of Production Research, Vol. 45, No. 18–19, pp. 4555–4572, 2007.
27. Lambert, A. J. D., “Linear Programming in Disassembly Clustering Sequence Generation.” Computers and Industrial Engineering, Vol. 36, No. 4, pp. 723-738, 1999.
28. Lambert, A.J.D., Gupta, S. M., “Demand-driven Disassembly Optimization for Electronic Products.” Journal of Electronics Manufacturing, Vol. 11, No. 2, pp. 121–135, 2002.
29. Lambert, A.J.D., Gupta, S. M., “Disassembly Modeling for Assembly, Maintenance, Reuse, and Recycling.” CRC Press, Boca Raton, FL, 2005.
30. Langella, I. M., “Heuristics for Demand-Driven Disassembly Planning.” Computers & Operations Research, Vol. 34, pp. 552-577, 2007.
31. Lee, D. H., Kang, J. G., Xirouchakis, P., “Disassembly Planning and Scheduling: Review and Further Research.” Proceedings of the Institution of Mechanical Engineers – Part B, Vol. 215, pp. 695-709, 2001.
32. Lee, S. G., Lye, S. W., Khoo, M. K., “A Multi-objective Methodology for Evaluating Product End-of-Life Options and Disassembly.” International Journal of Advanced Manufacturing Technology, Vol. 18, pp. 148–156, 2001.
33. Leung, S., Tsang, S., Ng, W. L., and Wu, Y., “A Robust Optimization Model for Multi-Site Production Planning Problem in an Uncertain Environment.” European Journal of Operational Research, Vol. 181, pp. 224-238, 2007.
34. Meacham, A., Uzsoy, R., Venkatadri, U., “Optimal Disassembly Configurations for Single and Multiple Products.” Journal of Manufacturing Systems, Vol. 18, pp. 311–322, 1999.
35. Mulvey, J. M., Vanderbei, R. J., Zenios, S. A., “Robust Optimization of Large-Scale Systems.” Operations Research, Vol. 43, No.2, pp. 264–281, 1995.
36. Neto, J. Q. F, Walther, G., Bloemhof-Ruwaard, J. M., van Nunen, J. A. E. E., Spengler, T., “From Closed-Loop to Sustainable Supply Chains: the WEEE Case.” International Journal of Production Research, Vol. 48, No. 15, pp. 4463-4481, 2010.
37. OECD, “Extended Producer Responsibility: A Guidance Manual for Governments, Paris, France”, 2001.
38. O’Shea, B., Grewal, S. S., Kaebernick, H. “State of the Art Literature Survey on Disassembly Planning.” Concurrent Engineering: Research and Applications, Vol. 6, pp. 345-357, 1998.
39. Sundin, E., Bras, B., “Making Functional Sales Environmentally and Economically Beneficial through Product Remanufacturing.” Journal of Cleaner Production, Vol. 13, No. 9, 2005.
40. Taleb, K. N., Gupta, S. M., “Disassembly of Multiple Product Structures.” Computers and Industrial Engineering, Vol. 32, No. 4, pp. 949-961, 1997.
41. Teunter, R. H., “Determining optimal disassembly and recovery strategies”, Omega, Vol.34, pp. 533–537, 2006.
42. Thierry, M., Salomon, M., Nunen, J. V., Wassenhove, L. V., “Strategic Issues in Product Recovery Management”, California Management Review, Vol. 37, No. 2, pp. 112–135, 1995.
43. Tsai, W. H., Hung, S. J., “Treatment and Recycling System Optimisation with Activity-Based Costing in WEEE Reverse Logistics Management: an Environmental Supply Chain Perspective.” International Journal of Production Research, Vol. 47, No. 19, pp. 5391–5420, 2009.
44. Wang, H. F., Hsu, H. W., “A Closed-Loop Logistic Model with a Spanning-Tree Based Genetic Algorithm.” Computers & Operations Research, Vol. 37, pp. 376–389, 2010.
45. Wu, Y., “Robust Optimization Applied to Uncertain Production Loading Problems with Import Quota Limits under the Global Supply Chain Management Environment.” International Journal of Production Research, Vol. 44, No. 5, pp. 849–882, 2006.
46. Yu, C. S., and Li, H. L., “A Robust Optimization Model for Stochastic Logistic Problems.” International Journal of Production Economics, Vol. 64, pp. 385–397, 2000.
47. Xanthopoulos, A., Iakovou, E., “On the Optimal Design of the Disassembly and Recovery Processes.” Waste Management, Vol. 29, pp. 1702-1711, 2009.
48. ?零tlin, J., Sundin, E., Bj?宁kman, M., “Product Life-cycle Implications for Remanufacturing Strategies.”, Journal of Cleaner Production, Vol. 17, pp. 999–1009, 2009.
49. ?頊g?刡, N., G?刌?岢n, H., “A Mixed Integer Programming Model for Remanufacturing in Reverse Logistics Environment.” International Journal of Advanced Manufacturing Technology, Vol. 39, pp. 1197-1206, 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top