Klayout Layout Viewer and Editor: http://www.klayout.de/。
呂學士、林佑昇(譯)、Campbell(原著)(2003),半導體製程。臺北市 : 臺北圖書。
林寅智,1998,「以工程資料為基礎之半導體故障分析系統」,國立清華大學工業工程與工程管理研究所碩士論文。郭信川、張建仁、劉仁清(2004),粒子群演算法於最佳化問題之研究,第一屆台灣作業研究學會學術研討會暨2004 年科技與管理學術研討會,台北。
陳麗伃,2004,「以資料挖礦為基礎之半導體測試性WAT資料分析診斷」,國立清華大學工業工程與工程管理研究所碩士論文。
曾憲雄、黃國禎(2005)。人工智慧與專家系統 : 理論.實務.應用。臺北市 : 旗標。
游淑敏,2008,「以WAT參數資料建構半導體研發設計階段黃金晶方群聚分析」,國立清華大學工業工程與工程管理研究所碩士論文。
黃承龍、王良吉、董吉雄(2005),粒子群最佳化演算法之文獻回顧與研究議題分析,2005 數位內容管理與應用研討會,高雄。
溫在昇,2005,「半導體測試專欄:半導體製程的監視器 參數測試讓製程更完美」,新電子,2005年4月號229期。
謝曉鋒、張文俊、楊之廉(2003),微粒群算法綜述,控制與決策,18(5),129-134。
簡禎富、施義成、林振銘、陳瑞坤,2005,半導體製造技術與管理,國立清華大學出版社。
魏連均,2006,「應用類神經網路建構晶圓圖故障圖樣辨識模式」,國立清華大學工業工程與工程管理研究所碩士論文。
羅文雄、蔡榮輝、鄭岫盈(譯)、Quirk、Serda(原著)(2003)。半導體製造技術。臺北市 : 臺灣培生教育。
譚克平,2008,「極端值判斷方法簡介」,台東大學教育學報,第十九卷,第一期,131-150。
Alpaydin, E., 2004. Introduction to machine learning. MIT Press.
Angeline, P. J. 1998. Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. Proceedings of the 7th International Conference on Evolutionary Programming VII, San Diego, CA.
Azevedo and Rotandi, D.N., 2007. Application of data mining techniques to the storage management and online distribution of satellite images, Rio de Janeiro, Brazil, 955-960.
Balasinski, A., 2005. DfM for SoC, Proceedings of the 9th International Database Engineering & Application Symposium, 41-46.
Barbancho, J., Leon, C., and Molina, F.J., 2007. Using artificial intelligence in routing schemes for wireless networks, Computer Communications, 30, 2802-2811.
Bohr, M.T. and El-Mansy, Y.A., 1998. Technology for advanced high-performance microprocessors, IEEE Trans. Electron Devices, 45, 620-625.
Bose, B.K., 2007. Neural network applications in power electronics and motor drives: An introduction and perspective, IEEE Transactions on Industrial Electronics, 54, 14-33.
Chen, T.S., Lin, C.C, Chiu, Y.H., and Chen, R.C., 2006. Combined density and constraint-based algorithm for clustering, In Proceedings of 2006 International Conference on Intelligent System and Knowledge Engineering.
Cheng, Y. (2008). Design For Manufacturing (DFM) in Nano-CMOS era. IEEE International Nanoelectronics Conference, 524-529.
Cheng, C.Y. and Cheng F.T, 2005. Engineering-chain requirements for semiconductor industry, Proceedings of the 2005 IEEE International Conference on Automation Science and Engineering, Edmonton, 381-386.
Chien, C.F., Hsu, S.C., Peng, S., and Wu, C.H., 2000. A cost-based heuristic for statistically determining sampling frequency in a wafer fab, Semiconductor Manufacturing Technology Workshop, 217-229.
Chung, S.H., Huang, C.Y., and Lee, A.H.I., 2006. Capacity allocation model for photolithography workstation with the constraints of process window and machine dedication, Production Planning and Control, 17(7), 678-688.
Doong, K.Y.Y., Lin, K.C., Tseng, T.C., Lu, Y.C., Lin, S.C., Hung, L.J., Ho, P.S., Hsieh,S., Young, K.L. and Liang, M.S. (2004). Electrical characterization of model-baseddummy feature insertion in Cu interconnects. Proceedings of International Conference on Microelectronic Test Structures, 87-92.
Doong, K. Y. Y., Huang, C. H., Chu, C. C., Lin, S. C., Hung, L. J., Ho, P. S., Hsieh,S., Wang, C. J., Lin C. C. and Yang, K. L. (2004). Infrastructure development and integration of electrical-based dimensional process window checking. IEEE Transactions on Semiconductor Manufacturing, 17, 123-141.
Doong, K. Y. Y., Bordelon, T. J., Hung, L. J., Liao, C. C., Lin, S. C., Ho, P. S., Hsieh,S. and Yang, K. L. (2008). Field-Configurable Test Structure Array (FC-TSA):Enabling Design for Monitor, Model, and Manufacturability. IEEE Transactionson Semiconductor Manufacturing, 21, 169-179, 2008
Du, Q., 2007, Modified fisher's linear discriminant analysis for hyperspectral imagery, IEEE Geoscience and Remote Sensing Letters, 4, 503-507.
Dunham, M.H., 2002, Data mining introductory and advanced topics, Pearson Education: New Jersey.
Eberhart, R. C. and J. Kennedy, 1995. A new optimizer using particle swarm theory. Proceedings Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan.
Eberhart, R. C. and Y. Shi, 1998. Comparison between genetic algorithms and particle swarm optimization. 1998 Annual Conference on Evolutionary Programming, San Diego, CA.
Fan, C.M., Guo, R.S., and Chang, S.C., 2000. SHEWMA: An end-of-line SPC scheme using wafer acceptance test data, IEEE Transactions on Semiconductor manufacturing, 13, 344-358.
Fayyad, U., 1997. Data mining and knowledge discovery in dataBase: Implication for scientific databases, Scientific and Statistical Database Management, 2-11.
Fogel, D and H. G. Beyer, 1996. A note on the empirical evaluation of intermediate recombination. Proceedings of the Fifth Annual Conference on Evolutionary Programming V, San Diego, CA.
Frawley, Piatetsky-Shapiro and Matheus (1992), “Knowledge discovery in databases: an overview”, AI Magazine, Fall 1992, 213-228.
Fukunaga, K., 1990. Introduction to statistical pattern recognition, San Diego: Academic Press Inc.
Han, J. and Kamber, M., 2000. Data mining: Concepts and techniques, Morgan Kaufmann.
Hsieh, S., Lin, S.C., Lee, M.H, Wang, J.R., and Lin, C., et al., 1999. A novel assessment of process control monitor in advanced semiconductor manufacturing: A complete set of addressable failure site test structures, in Proc. Int. Symp. Semiconductor Manufacturing (ISSM), 241-244.
Hu, X., Y. Shi and R. C. Eberhart (2004) Recent advances in particle swarm. Congress on IEEE Evolutionary Computation, Portland, Oregon.
Kaufman., L. and Rousseeuw, P.J., 1990. Finding groups in data: An introduction to cluster analysis, John Wiley & Sons.
Kohonen, T., 1988. An introduction to neural computing, Neural Networks, 1(1), 3-16.
Kohonen, T., 1990. The self-Organizing map, Proc. IEEE, 78(9), 1464-1480.
Kohonen, T., Oja, E., Simula, O., and Kangas, J., 1996. Engineering applications of the self-organizing map, Proceedings of The IEEE, 84, 1358-1384.
Lee, J.H., Yu, S.J., and Park, S.C., 2001. Design of intelligent data sampling methodology based on data mining, IEEE Transactions on Robotics and Automation, 17(5), 637-649.
Lee, J.H., 2002. Artifical intelligence-based sampling planning system for dynamic manufacturing process, Expert systems with applications 22, 117-133.
Li, K.C., 1991. Sliced inverse regression for dimension reduction,” Journal of the American Statistical Association, 86, 316-342.
Li, K.C., 1992. On principal hessian directions for data visualization and dimension reduction: Another application of Stein’s Lemma, Journal of the American Statistical Association, 87, 1025-1039.
Liu, Wang, Jin, Tang, Huang, 2004. Improved particle swarm optimization combined with chaos. Chaos, Solitons and Fractals, 25, 1261–1271
Liu, X.S., Shi, C.S., and Cheng, Y.Y., 2007. A fast method for identifying the quality of Chinese medicine injections based on self-organizing maps neural network, Chinese Journal of Analytical Chemistry, 35, 1483-1486.
Lukaszek, W., Grambow, K.G., and Tarbrough, W.J., 1990. Test chip based approach to automated diagnosis of CMOS yield problems, IEEE Trans. Semiconduct. Manufact., 3, 18-27.
Miyamoto, K., Inoue, K., Tamura, I., Kondo, N., Inoto, H., et al., 2000. Yield management methodology for SoC vertical yield Ram, in Proc. Int. Electron Device Meeting.
Nag, P.K., Maly, W., and Jocobs, H.J., 1997. Simulation of yield/cost learning curves with Y4,” IEEE Transactions on Semiconductor Manufacturing, 10(2), 256-266.
Narendra, P.M. and Fukunage, K., 1997. A branch and bound algorithm for feature subset selection, IEEE Trans. Computers, 6(9), 917-922.
Nauck, D., Klawonn, F., and Kruse, R., 1997. Foundations of neuro-fuzzy systems, John Wiley & Sons.
Ochoa, Wozny, Repke, 2010, A new algorithm for global optimization: Molecular-Inspired Parallel Tempering. Computers and Chemical Engineering, 34, 2072-2084.
Pudil, P., Novovicova, J., and Kittler, J., 1994. Floating search methods in feature selection, Pattern Recognition Letters, 15, 1119-1125.
Ravi, V., Kurniawan, H., Thai, P.N.K, and Kumar, P.R., 2008. Soft computing system for bank performance prediction, Applied Soft Computing, 8, 305-315.
Roberto, B., 1994. Using mutual information for selecting features in supervised neural net learning, IEEE Transactions on Neural Networks, 5, 337-550.
Schalkoff, R.J., 1997. Artificial neural networks, Mcgraw-hill International Editions.
Sekar, R., Bendre, M., Dhurjati, D., and Bollineni, P., 2001. A fast automaton-based method for detecting anomalous program behaviors, Proceedings 2001 IEEE Symposium on Security and Privacy, Oakland, California, 144 – 155.
Shiffler, R. E. (1988). Maximum Z score and outliers. The American Statistician, 42(1), 79-80.
Steven, J. P. (1990). Intermediate statistics: A modern approach. Hillsdale, New Jersey: Lawrence Erlbaum Associates.
Wilson, D. and Walton, A.J., 1994. Automatic in-line to end-of-line defect correlation using FSRAM test structure for quick killer defect identification, in Proc. IEEE Int. Conf. Microelectronic Test Structures, 160-163.
Witten, H.I. and Frank, E., 2005. Data mining: Practical machine learning tools techniques, Rio de Janeiro, Brazil, 2nd ed, Elsevier.
Yan, A.M., Kerschen, G., and Boe, P.D., Structural damage diagnosis under varying environmental conditions-Part I: A linear analysis, Mechanical Systems and Singal Processing, 21, 847-864.