跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 01:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪崇偉
論文名稱:半導體測試載具中以分子啟發式粒子群最佳化法進行製程參數設計之研究
論文名稱(外文):Using Molecular-Inspired Particle Swarm Optimization to Solve the Design of Process Parameters in Semiconductor Test Vehicle
指導教授:洪一峯洪一峯引用關係劉淑範劉淑範引用關係
口試委員:洪一峯劉淑範陳飛龍
口試日期:2011-06-19
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:62
中文關鍵詞:測試載具晶圓允收測試製程空間粒子群最佳化演算法
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
在半導體產業進入奈米世代後,許多製程對積體電路佈局的敏感度越來越顯著,製程的變異比例也隨著線寬的縮小而提高,許多與電路佈局設計相關的問題已經無法用傳統的檢驗和管制來解決,必須追溯到研發階段之電路佈局設計來做改變與配合,以提升其製造的穩定。從研發設計階段投入不同的測試載具在一片晶圓上,經過設定之製程參數製造後,再將測試載具上每一個Test Structure進行晶圓允收測試(Wafer Acceptance Test;WAT)的參數收集,而研發工程師可藉由WAT電性測試資料,尋找製程空間(Process Window),而所謂的製程空間就是製程能力,意指晶圓進行所有的製造流程能滿足其設計與製造規範。然而,目前在找出積體電路設計與製程參數最佳組合問題中,皆缺乏一套有效的方法協助研發設計工程師進行分析,需依靠其研發製程參數之個人經驗,因此,本研究提出以分子啟發式粒子群最佳化(Molecular-Inspired Particle Swarm Optimization, MI-PSO)演算法,將測試載具中每一個Test Structure所量測之WAT參數進行分析,找出符合設計規範與電路佈局下表現最佳的參數組合,以提供研發設計工程師有更多的資訊進行可能量產之可製造性的分析。
目錄
摘要 I
Abstract II
謝辭 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 4
1.4 研究架構 6
第二章 文獻探討 8
2.1 半導體製程介紹 8
2.1.1 半導體之設計開發流程 8
2.1.2 半導體之製造流程 10
2.2 晶圓測試 15
2.2.1 晶圓測試 15
2.2.2 晶圓允收測試 16
2.2.3 製程空間分析 19
2.3 資料探勘技術 20
2.3.1 資料前處理 21
2.3.2 粒子群最佳化演算法 24
第三章 半導體測試載具中MI-PSO模式之建構 28
3.1 問題定義 28
3.2 資料前處理 32
3.2.1資料標準化 32
3.2.2極端值剔除 32
3.2.3資料正規化 33
3.3 改進型粒子群最佳化演算法 34
3.3.1 粒子分群 34
3.3.2 權重計算 36
3.3.3 分子啟發式粒子群最佳化演算法流程 37
第四章 系統實作與實證分析 40
4.1 系統建構與實作 40
4.2 MI-PSO與基本型PSO結果比較 46
4.3 結果比較與分析 49
第五章 結論與討論 53
5.1 結論 53
5.2 未來研究方向及討論 53
參考文獻 55


Klayout Layout Viewer and Editor: http://www.klayout.de/。
呂學士、林佑昇(譯)、Campbell(原著)(2003),半導體製程。臺北市 : 臺北圖書。
林寅智,1998,「以工程資料為基礎之半導體故障分析系統」,國立清華大學工業工程與工程管理研究所碩士論文。
郭信川、張建仁、劉仁清(2004),粒子群演算法於最佳化問題之研究,第一屆台灣作業研究學會學術研討會暨2004 年科技與管理學術研討會,台北。
陳麗伃,2004,「以資料挖礦為基礎之半導體測試性WAT資料分析診斷」,國立清華大學工業工程與工程管理研究所碩士論文。
曾憲雄、黃國禎(2005)。人工智慧與專家系統 : 理論.實務.應用。臺北市 : 旗標。
游淑敏,2008,「以WAT參數資料建構半導體研發設計階段黃金晶方群聚分析」,國立清華大學工業工程與工程管理研究所碩士論文。
黃承龍、王良吉、董吉雄(2005),粒子群最佳化演算法之文獻回顧與研究議題分析,2005 數位內容管理與應用研討會,高雄。
溫在昇,2005,「半導體測試專欄:半導體製程的監視器 參數測試讓製程更完美」,新電子,2005年4月號229期。
謝曉鋒、張文俊、楊之廉(2003),微粒群算法綜述,控制與決策,18(5),129-134。
簡禎富、施義成、林振銘、陳瑞坤,2005,半導體製造技術與管理,國立清華大學出版社。
魏連均,2006,「應用類神經網路建構晶圓圖故障圖樣辨識模式」,國立清華大學工業工程與工程管理研究所碩士論文。
羅文雄、蔡榮輝、鄭岫盈(譯)、Quirk、Serda(原著)(2003)。半導體製造技術。臺北市 : 臺灣培生教育。
譚克平,2008,「極端值判斷方法簡介」,台東大學教育學報,第十九卷,第一期,131-150。
Alpaydin, E., 2004. Introduction to machine learning. MIT Press.
Angeline, P. J. 1998. Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. Proceedings of the 7th International Conference on Evolutionary Programming VII, San Diego, CA.
Azevedo and Rotandi, D.N., 2007. Application of data mining techniques to the storage management and online distribution of satellite images, Rio de Janeiro, Brazil, 955-960.
Balasinski, A., 2005. DfM for SoC, Proceedings of the 9th International Database Engineering & Application Symposium, 41-46.
Barbancho, J., Leon, C., and Molina, F.J., 2007. Using artificial intelligence in routing schemes for wireless networks, Computer Communications, 30, 2802-2811.
Bohr, M.T. and El-Mansy, Y.A., 1998. Technology for advanced high-performance microprocessors, IEEE Trans. Electron Devices, 45, 620-625.
Bose, B.K., 2007. Neural network applications in power electronics and motor drives: An introduction and perspective, IEEE Transactions on Industrial Electronics, 54, 14-33.
Chen, T.S., Lin, C.C, Chiu, Y.H., and Chen, R.C., 2006. Combined density and constraint-based algorithm for clustering, In Proceedings of 2006 International Conference on Intelligent System and Knowledge Engineering.
Cheng, Y. (2008). Design For Manufacturing (DFM) in Nano-CMOS era. IEEE International Nanoelectronics Conference, 524-529.
Cheng, C.Y. and Cheng F.T, 2005. Engineering-chain requirements for semiconductor industry, Proceedings of the 2005 IEEE International Conference on Automation Science and Engineering, Edmonton, 381-386.
Chien, C.F., Hsu, S.C., Peng, S., and Wu, C.H., 2000. A cost-based heuristic for statistically determining sampling frequency in a wafer fab, Semiconductor Manufacturing Technology Workshop, 217-229.
Chung, S.H., Huang, C.Y., and Lee, A.H.I., 2006. Capacity allocation model for photolithography workstation with the constraints of process window and machine dedication, Production Planning and Control, 17(7), 678-688.
Doong, K.Y.Y., Lin, K.C., Tseng, T.C., Lu, Y.C., Lin, S.C., Hung, L.J., Ho, P.S., Hsieh,S., Young, K.L. and Liang, M.S. (2004). Electrical characterization of model-baseddummy feature insertion in Cu interconnects. Proceedings of International Conference on Microelectronic Test Structures, 87-92.
Doong, K. Y. Y., Huang, C. H., Chu, C. C., Lin, S. C., Hung, L. J., Ho, P. S., Hsieh,S., Wang, C. J., Lin C. C. and Yang, K. L. (2004). Infrastructure development and integration of electrical-based dimensional process window checking. IEEE Transactions on Semiconductor Manufacturing, 17, 123-141.
Doong, K. Y. Y., Bordelon, T. J., Hung, L. J., Liao, C. C., Lin, S. C., Ho, P. S., Hsieh,S. and Yang, K. L. (2008). Field-Configurable Test Structure Array (FC-TSA):Enabling Design for Monitor, Model, and Manufacturability. IEEE Transactionson Semiconductor Manufacturing, 21, 169-179, 2008
Du, Q., 2007, Modified fisher's linear discriminant analysis for hyperspectral imagery, IEEE Geoscience and Remote Sensing Letters, 4, 503-507.
Dunham, M.H., 2002, Data mining introductory and advanced topics, Pearson Education: New Jersey.
Eberhart, R. C. and J. Kennedy, 1995. A new optimizer using particle swarm theory. Proceedings Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan.
Eberhart, R. C. and Y. Shi, 1998. Comparison between genetic algorithms and particle swarm optimization. 1998 Annual Conference on Evolutionary Programming, San Diego, CA.
Fan, C.M., Guo, R.S., and Chang, S.C., 2000. SHEWMA: An end-of-line SPC scheme using wafer acceptance test data, IEEE Transactions on Semiconductor manufacturing, 13, 344-358.
Fayyad, U., 1997. Data mining and knowledge discovery in dataBase: Implication for scientific databases, Scientific and Statistical Database Management, 2-11.
Fogel, D and H. G. Beyer, 1996. A note on the empirical evaluation of intermediate recombination. Proceedings of the Fifth Annual Conference on Evolutionary Programming V, San Diego, CA.
Frawley, Piatetsky-Shapiro and Matheus (1992), “Knowledge discovery in databases: an overview”, AI Magazine, Fall 1992, 213-228.
Fukunaga, K., 1990. Introduction to statistical pattern recognition, San Diego: Academic Press Inc.
Han, J. and Kamber, M., 2000. Data mining: Concepts and techniques, Morgan Kaufmann.
Hsieh, S., Lin, S.C., Lee, M.H, Wang, J.R., and Lin, C., et al., 1999. A novel assessment of process control monitor in advanced semiconductor manufacturing: A complete set of addressable failure site test structures, in Proc. Int. Symp. Semiconductor Manufacturing (ISSM), 241-244.
Hu, X., Y. Shi and R. C. Eberhart (2004) Recent advances in particle swarm. Congress on IEEE Evolutionary Computation, Portland, Oregon.
Kaufman., L. and Rousseeuw, P.J., 1990. Finding groups in data: An introduction to cluster analysis, John Wiley & Sons.
Kohonen, T., 1988. An introduction to neural computing, Neural Networks, 1(1), 3-16.
Kohonen, T., 1990. The self-Organizing map, Proc. IEEE, 78(9), 1464-1480.
Kohonen, T., Oja, E., Simula, O., and Kangas, J., 1996. Engineering applications of the self-organizing map, Proceedings of The IEEE, 84, 1358-1384.
Lee, J.H., Yu, S.J., and Park, S.C., 2001. Design of intelligent data sampling methodology based on data mining, IEEE Transactions on Robotics and Automation, 17(5), 637-649.
Lee, J.H., 2002. Artifical intelligence-based sampling planning system for dynamic manufacturing process, Expert systems with applications 22, 117-133.
Li, K.C., 1991. Sliced inverse regression for dimension reduction,” Journal of the American Statistical Association, 86, 316-342.
Li, K.C., 1992. On principal hessian directions for data visualization and dimension reduction: Another application of Stein’s Lemma, Journal of the American Statistical Association, 87, 1025-1039.
Liu, Wang, Jin, Tang, Huang, 2004. Improved particle swarm optimization combined with chaos. Chaos, Solitons and Fractals, 25, 1261–1271
Liu, X.S., Shi, C.S., and Cheng, Y.Y., 2007. A fast method for identifying the quality of Chinese medicine injections based on self-organizing maps neural network, Chinese Journal of Analytical Chemistry, 35, 1483-1486.
Lukaszek, W., Grambow, K.G., and Tarbrough, W.J., 1990. Test chip based approach to automated diagnosis of CMOS yield problems, IEEE Trans. Semiconduct. Manufact., 3, 18-27.
Miyamoto, K., Inoue, K., Tamura, I., Kondo, N., Inoto, H., et al., 2000. Yield management methodology for SoC vertical yield Ram, in Proc. Int. Electron Device Meeting.
Nag, P.K., Maly, W., and Jocobs, H.J., 1997. Simulation of yield/cost learning curves with Y4,” IEEE Transactions on Semiconductor Manufacturing, 10(2), 256-266.
Narendra, P.M. and Fukunage, K., 1997. A branch and bound algorithm for feature subset selection, IEEE Trans. Computers, 6(9), 917-922.
Nauck, D., Klawonn, F., and Kruse, R., 1997. Foundations of neuro-fuzzy systems, John Wiley & Sons.
Ochoa, Wozny, Repke, 2010, A new algorithm for global optimization: Molecular-Inspired Parallel Tempering. Computers and Chemical Engineering, 34, 2072-2084.
Pudil, P., Novovicova, J., and Kittler, J., 1994. Floating search methods in feature selection, Pattern Recognition Letters, 15, 1119-1125.
Ravi, V., Kurniawan, H., Thai, P.N.K, and Kumar, P.R., 2008. Soft computing system for bank performance prediction, Applied Soft Computing, 8, 305-315.
Roberto, B., 1994. Using mutual information for selecting features in supervised neural net learning, IEEE Transactions on Neural Networks, 5, 337-550.
Schalkoff, R.J., 1997. Artificial neural networks, Mcgraw-hill International Editions.
Sekar, R., Bendre, M., Dhurjati, D., and Bollineni, P., 2001. A fast automaton-based method for detecting anomalous program behaviors, Proceedings 2001 IEEE Symposium on Security and Privacy, Oakland, California, 144 – 155.
Shiffler, R. E. (1988). Maximum Z score and outliers. The American Statistician, 42(1), 79-80.
Steven, J. P. (1990). Intermediate statistics: A modern approach. Hillsdale, New Jersey: Lawrence Erlbaum Associates.
Wilson, D. and Walton, A.J., 1994. Automatic in-line to end-of-line defect correlation using FSRAM test structure for quick killer defect identification, in Proc. IEEE Int. Conf. Microelectronic Test Structures, 160-163.
Witten, H.I. and Frank, E., 2005. Data mining: Practical machine learning tools techniques, Rio de Janeiro, Brazil, 2nd ed, Elsevier.
Yan, A.M., Kerschen, G., and Boe, P.D., Structural damage diagnosis under varying environmental conditions-Part I: A linear analysis, Mechanical Systems and Singal Processing, 21, 847-864.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top