跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/27 13:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐可芳
研究生(外文):Hsu, Ke-Fang
論文名稱:Polarization Dependence X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering Studies at Co K-edge in Single Crystal Bi2Sr2CoO6+δ Compounds
論文名稱(外文):Bi2Sr2CoO6+δ單晶之鈷K吸收邊線偏振X光吸收光譜與共振非彈性X光散射光譜研究
指導教授:崔古鼎
指導教授(外文):Tsuei, Ku-Ding
口試委員:黃迪靖周方正
口試日期:2011-07-30
學位類別:碩士
校院名稱:國立清華大學
系所名稱:先進光源科技學位學程
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:96
中文關鍵詞:線偏振X光吸收光譜共振非彈性X光散射光譜
外文關鍵詞:polarization dependent X-ray absorptionresonant inelastic X-ray scatteringBi2Sr2CoO6+δCoO6 octahedrondipole transitionquadrupole transitionlocal distortioncharge transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
層狀鈷氧化物Bi2Sr2CoO6+δ引起科學家廣泛興趣的主因是由於它的結構與Bi2Sr2CuO6+δ相似。不同含氧量的Bi2Sr2CoO6+δ展現出令人驚奇的電子與磁的特性。在本論文中,我們以在鈷K吸收邊緣不同偏極方向之X光吸收光譜與共振非彈性X光散射光譜等技術來探討Bi2Sr2CoO6+δ單晶中鈷氧鍵結能態、電子軌域分布情形以及費米能階附近的電荷躍遷行為。從X光吸收光譜研究中顯示,由於Bi2Sr2CoO6+δ晶體內CoO6所形成的八面體具有很強的形變使其破壞了晶格結構D4h的對稱性,此八面體的形變造成了鈷原子本身4p軌域的混成或是4p軌域與3d軌域的混成。我們推測造成此高度軌域混成之原因可能是來自於氧原子的參雜,當氧含量δ越大CoO6所形成的八面體形變量就越大,實驗結果證實δ > 0.25的形變量比δ ~ 0.25大。從共振非彈性X光散射光譜可以發現,樣品Tpaek ~ 280 K在2.8電子伏特, 4.6電子伏特, 7.0電子伏特等三處具有能量損失的激發態,類似的情形也發生在樣品Tpaek ~ 150 K上, 能量損失激發態出現在3.0電子伏特, 4.6電子伏特及7.7電子伏特處。這些能量損失激發態的位置可以對應到鈷原子3d軌域以及氧原子2p軌域間的電荷躍遷機制。其中我們可以清楚的辨認出4.5電子伏特的能量損失激發態出現在吸收光譜中鈷原子的電荷躍遷1s→4px’, 4py’伴隨著氧之共價電子轉移至鈷上O 2p→Co 3dx’2- y’2的過程。

Layered cobalt oxide Bi2Sr2CoO6+δ have attracted much interest because it is isostructural to the high-Tc superconductor Bi2Sr2CuO6+δ. Furthermore, Bi2Sr2CoO6+δ exhibit a series of surprising electronic and magnetic properties with various oxygen contents. We have carried out polarization dependent X-ray absorption (XAS) and resonant inelastic X-ray scattering (RIXS) measurements to study the orbital symmetry and the energies of ligand to metal charge transfer excitations. The XAS measurement reveals that because the centrosymmetry is broken from D4h symmetry due to strong local distortion, there exists a large mixing among 4p states or hybridization between 4p and 3d states. This distortion of CoO6 octahedron with δ > 0.25 is more severe than δ ~ 0.25 due to extra oxygen insertion
In the RIXS measurement, spectra of the Tpeak~280 K sample exhibit three clear inelastic features around 2.8 eV, 4.6 eV and 7.0 eV. Similarly in the Tpeak~150 K sample three peaks appear around 3.0 eV, 4.6 eV and 7.7 eV. The lack of dispersion suggests the highly localized characteristics of these excitations. These features may be referred to charge transfer mechanism from a 2p electron of O to a 3d hole of Co in the CoO2 plane. Particularly the energy loss feature at 4.5 eV can be clearly identified as a charge transfer excitation because it resonates at the absorption transition of 1s→4px’, 4py’ with ligand to metal charge transfer (LMCT) from O 2p→Co 3dx’2- y’2.

Chapter 1 Introduction 1
Chapter 2 Backgrounds 3
2.1 Sample Information 3
2.1.1 Sample Introduction 3
2.1.2 Sample Preparation 3
2.1.3 Sample Physical Properties 5
2.1.3.1 Mott-Hubbard Insulator and Charge Transfer Insulator 11
2.1.3.2 Crystal Field Theory and Jahn-Teller Distortion 14
2.2 Beamline Setup 18
Chapter 3 X-ray Absorption Spectroscopy 21
3.1 Introduction 21
3.2 Dipole and Quadrupole Transition 23
3.3 Experiment Setup and Result 25
3.3.1 Pre-Edge Part 32
3.3.2 Edge Part 39
Chapter 4 Resonant Inelastic X-ray Scattering 55
4.1 Introduction 55
4.2 Principle and Theory 57
4.2.1 Principle 57
4.2.2 Theory 59
4.2.3 RIXS Spectrometer Setup 64
4.3 Incident Photon Energy Dependence 68
4.4 Momentum Transfer Dependence 73
4.5 Discussion 80
4.5.1 Co Kβ2,5 and Kβ” Fluorescence of Bi2Sr2CoO6+δ 80
4.5.2 Energy Loss Feature 83
Chapter 5 Conclusions 92
Chapter 6 Reference 94

1. C. Michel, M. Hervieu, M. M. Borel, A. Grandin, F. Deslandes, J. Provost and B. Raveau, Z. Phys. B68, 421 (1987).
2. J. Akimitsu, A. Yamazaki, H. Sawa and H. Fujiki, Jpn. J. Appl. Phys. 26, L2080 (1987).
3. H. Meada, Y. Tanaka, M. Fukutomi and T. Asano: Jpn. J. Appl. Phys. 27, L209 (1988).
4. E. Takayama-Muromachi, Y. Uchida, Y. Matsui, M. Onoda and K. Kato, Jpn. J. Appl. Phys. 27, L556 (1988).
5. J. M. Tarascon, P. F. Miceli, P. Barboux, D. M. Hwang, G. W. Hull, M. Giroud, L. H. Greene, Yvon LePage, W. R. McKinnon, E. Tselepis, G. Pleizier, M. Eibschutz, D. A. Neumann, and J. J. Rhyne, Phys. Rev. B. 39, 11587 (1989).
6. J. M. Tarascon, Y. le Page, W. R. Mckinnon, E. Tselepis, P. Barboux, B. G. Bagley, and R. Ramesh, Materials Research Society Symposia Proceedings. 156, 317 (1989).
7. J. B. Shi, J. C. Ho, T. J. Lee, B. S. Chiou, H. C. Ku, Physica C. 205, 129 (1993).
8. H. Greene, Yvon LePage, W. R. McKinnon, E. Tselepis, G. Pleizier, M. Eibschutz, D. A. Neumann, and J. J. Rhyne, Phys. Rev. B. 39, 11587 (1989).
9. G. Burns, G. V. Chandrashekhar, F. H. Dacol, M. W. Shafer, and P. Strobel, Solid State Commun. 67, 603 (1988).
10. K. J. Thomas, Y. S. Lee, F. C. Chou, B. Khaykovich, P. A. Lee, M. A. Kastner, R. J. Cava, and J. W. Lynn, Phys. Rev. B. 66, 054115 (2002).
11. H. C. Hsu, ‘Crystal Growth and Physical Property Studies of Low Dimensional Transition Metal Oxide Materials Bi2Sr2CoO6+δ and LiCu2O2.’, Ph.D. thesis, National Taiwan Normal University, June (2010).
12. A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999), and references therein.
13. G. Chern, L. R. Song, J. B. Shi, Physica C. 253, 97 (1995).
14. Kazimierz Conder, Solid State Chemistry Group Laboratory for Developments and Methods and Laboratory for Neutron Scattering Paul Scherrer Institute & ETH Zürich ‘Crystal growth of oxides by Traveling Solvent Floating Zone technique’
15. Mott N. F., Proc. Phys. Soc. A. 62, 416 (1949).
16. Mott N. F., Can. J. Phys. 34, 1356 (1956).
17. Mott N. F., Metal-Insulator Transitions (London: Taylor and Francis1974).
18. Anderson P.W., Phys. Rev. 115. (1959).
19. Hubbard J. Proc Roy Soc (London), 1964, A281: 401.
20. J. Zaanen, G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).
21. A. Fujimori, Department of physics, University of Tokyo, Bunkyo, Tokyo 113, Japan.
22. Andrea Damascelli, Zahid Hussain, Zhi-Xun Shen, Rev. of Modern Phys. 75, 473 (2003).
23. Inorganic chemistry: Principle of structure and reactivity, James E. Huheey, Ellen A. Keiter, Richard L. Keiter, 2007.
24. J. H. Van Vleck, J. Chem. Phys. 3, 803-806, 807-813 (1935).
25. C. J. Ballhausen, J. Chem. Dduc. 56, 194-197, 215-218, 357-361 (1979).
26. 吳文斌、黃迪靖, ”物理雙月刊(廿六卷二期)”, p401, 中華民國2004年4月
27. Y. Q. Cai, C. C. Chen, P. Chow, K. L. Tsang, C. T. Chen, and C. C. Kao, SRRC Activity Report 2011/2002. 83, (2002).
28. C. H. Chen, B. J. Hwang, J. M. Chen, H. S. Sheu, J. Power Source. 174, 938 (2007).
29. J. -P. Rueff and A. Shukla, Rev. Mod. Phys. 82, 847 (2010).
30. Min Gyu Kim and Chul Hyun Yo, J. Phys. Chem. B. 103, 6457 (1999).
31. Won-Sub Yoon and Kwang-Bum Kim, Min-Gyu Kim, Min-Kyu Lee, Hyun-Joon Shin, Jay-Min Lee, and Jae-Sung Lee, Chul-Hyun Yo, J. Phys. Chem. B. 106, 9252 (2002).
32. Frank de Groot, György Vank´o, Pieter Glatzel, J. Phys. Condens. 21, 104207 (2009).
33. György Vankó; Frank M. F. de Groot, aeXiv: 0802.2744v1 (2008).
34. M. C. Martins Alves, J. P. Dode let, D. Guay, M. Ladouceur, G. Tourillon, J. Phys. Chem. 96, 10898 (1992).
35. Janine C. Swarbrick, Tsu-Chien Weng, Karina Schulte, Andrei N. Khlobystov, Pieter Glatzel, Phys. Chem. Chem. Phys. 12, 9693 (2010).
36. T. C. Kaspar, T. Droubay, S. M. Heald, P. Nachimuthu, C. M. Wang, V. Shutthanandan, C. A. Johnson, D. R. Gamelin, S. A. Chambers, New Journal of Physics. 10, 055010 (2008).
37. Hyun Chul Choi, Sang Yun Lee, Seung Bin Kim, Min Gyu Kim, Min Kyu Lee, Hyun Joon Shin, and Jae Sung Lee, J. Phys. Chem. B. 106, 9252 (2002).
38. Y. W. Tsai, B. J. Hwang, G. Ceder, H. S. Sheu, D. G. Liu, and J. F. Lee ,Chem. Mater. 17, 3191 (2005).
39. C. C. Kao, W. A. L. Caliebe, J. B. Hastingts, and J. M. Gillet, Phys. Rev. B. 54, 16361 (1996).
40. U. Bergmann, C. R. Horne, T. J. Collins, J. M. Workman, and S. P. Cramer, Chem. Phys. Lett. 302, 119 (1999).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top