|
1. Newman, R.A. and K.E. Prehoda, Intramolecular interactions between the SRC homology 3 and guanylate kinase domains of discs large regulate its function in asymmetric cell division. J Biol Chem, 2009. 284(19): p. 12924-32. 2. Hsu, C.C., J.D. Moncaleano, and O.I. Wagner, Sub-cellular distribution of UNC-104(KIF1A) upon binding to adaptors as UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-2(Liprin-alpha) in C. elegans neurons. Neuroscience, 2011. 176: p. 39-52. 3. Funke, L., S. Dakoji, and D.S. Bredt, Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem, 2005. 74: p. 219-45. 4. Gross, S.P., Hither and yon: a review of bi-directional microtubule-based transport. Phys Biol, 2004. 1(1-2): p. R1-11. 5. Vale, R.D., The molecular motor toolbox for intracellular transport. Cell, 2003. 112(4): p. 467-80. 6. Hirokawa, N. and R. Takemura, Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci, 2005. 6(3): p. 201-14. 7. Hirokawa, N., S. Niwa, and Y. Tanaka, Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron, 2010. 68(4): p. 610-38. 8. Brown, A., Axonal transport of membranous and nonmembranous cargoes: a unified perspective. J Cell Biol, 2003. 160(6): p. 817-21. 9. Terada, S., et al., Kinesin-1/Hsc70-dependent mechanism of slow axonal transport and its relation to fast axonal transport. EMBO J, 2010. 29(4): p. 843-54. 10. De Vos, K.J., et al., Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci, 2008. 31: p. 151-73. 11. Chevalier-Larsen, E. and E.L. Holzbaur, Axonal transport and neurodegenerative disease. Biochim Biophys Acta, 2006. 1762(11-12): p. 1094-108. 12. Hirokawa, N., Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science, 1998. 279(5350): p. 519-26. 13. Hall, D.H. and E.M. Hedgecock, Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell, 1991. 65(5): p. 837-47. 14. Zhou, H.M., I. Brust-Mascher, and J.M. Scholey, Direct visualization of the movement of the monomeric axonal transport motor UNC-104 along neuronal processes in living Caenorhabditis elegans. J Neurosci, 2001. 21(11): p. 3749-55. 15. Hammond, J.W., et al., Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biol, 2009. 7(3): p. e72. 16. Klopfenstein, D.R., et al., Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell, 2002. 109(3): p. 347-58. 17. Verhey, K.J. and J.W. Hammond, Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol, 2009. 10(11): p. 765-77. 18. Pierce, D.W., et al., Single-molecule behavior of monomeric and heteromeric kinesins. Biochemistry, 1999. 38(17): p. 5412-21. 19. Lee, J.R., et al., An intramolecular interaction between the FHA domain and a coiled coil negatively regulates the kinesin motor KIF1A. EMBO J, 2004. 23(7): p. 1506-15. 20. Tomishige, M., D.R. Klopfenstein, and R.D. Vale, Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science, 2002. 297(5590): p. 2263-7. 21. Wagner, O.I., et al., Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. Proc Natl Acad Sci U S A, 2009. 106(46): p. 19605-10. 22. Hollenbeck, P.J., The pattern and mechanism of mitochondrial transport in axons. Front Biosci, 1996. 1: p. d91-102. 23. Rogers, S.L., et al., Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro. Proc Natl Acad Sci U S A, 1997. 94(8): p. 3720-5. 24. Wu, X., et al., Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function In vivo. J Cell Biol, 1998. 143(7): p. 1899-918. 25. Welte, M.A., et al., Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell, 1998. 92(4): p. 547-57. 26. Horvitz, H.R. and J.E. Sulston, Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics, 1980. 96(2): p. 435-54. 27. Hoskins, R., et al., The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development, 1996. 122(1): p. 97-111. 28. Anderson, J.M., Cell signalling: MAGUK magic. Curr Biol, 1996. 6(4): p. 382-4. 29. Caruana, G., Genetic studies define MAGUK proteins as regulators of epithelial cell polarity. Int J Dev Biol, 2002. 46(4): p. 511-8. 30. Hsueh, Y.P., The role of the MAGUK protein CASK in neural development and synaptic function. Curr Med Chem, 2006. 13(16): p. 1915-27. 31. Setou, M., et al., Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science, 2000. 288(5472): p. 1796-802. 32. Olsen, O., et al., Synaptic transmission regulated by a presynaptic MALS/Liprin-alpha protein complex. Curr Opin Cell Biol, 2006. 18(2): p. 223-7. 33. Olsen, O., et al., Neurotransmitter release regulated by a MALS-liprin-alpha presynaptic complex. J Cell Biol, 2005. 170(7): p. 1127-34. 34. Zhen, M. and Y. Jin, The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature, 1999. 401(6751): p. 371-5. 35. Miller, K.E., et al., Direct observation demonstrates that Liprin-alpha is required for trafficking of synaptic vesicles. Curr Biol, 2005. 15(7): p. 684-9. 36. Samuels, B.A., et al., Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron, 2007. 56(5): p. 823-37. 37. Hanada, T., et al., GAKIN, a novel kinesin-like protein associates with the human homologue of the Drosophila discs large tumor suppressor in T lymphocytes. J Biol Chem, 2000. 275(37): p. 28774-84. 38. Asaba, N., et al., Direct interaction with a kinesin-related motor mediates transport of mammalian discs large tumor suppressor homologue in epithelial cells. J Biol Chem, 2003. 278(10): p. 8395-400. 39. Yamada, K.H., T. Hanada, and A.H. Chishti, The effector domain of human Dlg tumor suppressor acts as a switch that relieves autoinhibition of kinesin-3 motor GAKIN/KIF13B. Biochemistry, 2007. 46(35): p. 10039-45. 40. Shin, H., et al., Association of the kinesin motor KIF1A with the multimodular protein liprin-alpha. J Biol Chem, 2003. 278(13): p. 11393-401. 41. Schnapp, B.J., Trafficking of signaling modules by kinesin motors. J Cell Sci, 2003. 116(Pt 11): p. 2125-35. 42. Van Criekinge, W. and R. Beyaert, Yeast Two-Hybrid: State of the Art. Biol Proced Online, 1999. 2: p. 1-38. 43. Gietz, R.D. and R.H. Schiestl, Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast, 1991. 7(3): p. 253-63. 44. Gietz, R.D., et al., Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast, 1995. 11(4): p. 355-60. 45. Li, B. and S. Fields, Identification of mutations in p53 that affect its binding to SV40 large T antigen by using the yeast two-hybrid system. FASEB J, 1993. 7(10): p. 957-63. 46. Bartel, P., et al., Elimination of false positives that arise in using the two-hybrid system. Biotechniques, 1993. 14(6): p. 920-4. 47. Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p. 71-94. 48. Ferguson, E.L. and H.R. Horvitz, Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics, 1985. 110(1): p. 17-72. 49. Kumar, J., et al., The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLoS Genet, 2010. 6(11): p. e1001200. 50. Kocsis, E., et al., Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment. J Struct Biol, 1991. 107(1): p. 6-14. 51. Koushika, S.P., et al., Mutations in Caenorhabditis elegans cytoplasmic dynein components reveal specificity of neuronal retrograde cargo. J Neurosci, 2004. 24(16): p. 3907-16. 52. Li, J., et al., The FHA domain mediates phosphoprotein interactions. J Cell Sci, 2000. 113 Pt 23: p. 4143-9. 53. Tavares, G.A., E.H. Panepucci, and A.T. Brunger, Structural characterization of the intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. Mol Cell, 2001. 8(6): p. 1313-25. 54. Nix, S.L., et al., hCASK and hDlg associate in epithelia, and their src homology 3 and guanylate kinase domains participate in both intramolecular and intermolecular interactions. J Biol Chem, 2000. 275(52): p. 41192-200. 55. Reese, M.L., et al., The guanylate kinase domain of the MAGUK PSD-95 binds dynamically to a conserved motif in MAP1a. Nat Struct Mol Biol, 2007. 14(2): p. 155-63. 56. Kanamarlapudi, V., Centaurin-alpha1 and KIF13B kinesin motor protein interaction in ARF6 signalling. Biochem Soc Trans, 2005. 33(Pt 6): p. 1279-81. 57. Wu, H., et al., Intramolecular interactions regulate SAP97 binding to GKAP. EMBO J, 2000. 19(21): p. 5740-51. 58. Paarmann, I., et al., Formation of complexes between Ca2+.calmodulin and the synapse-associated protein SAP97 requires the SH3 domain-guanylate kinase domain-connecting HOOK region. J Biol Chem, 2002. 277(43): p. 40832-8. 59. Masuko, N., et al., Interaction of NE-dlg/SAP102, a neuronal and endocrine tissue-specific membrane-associated guanylate kinase protein, with calmodulin and PSD-95/SAP90. A possible regulatory role in molecular clustering at synaptic sites. J Biol Chem, 1999. 274(9): p. 5782-90. 60. Muller, M.J., S. Klumpp, and R. Lipowsky, Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc Natl Acad Sci U S A, 2008. 105(12): p. 4609-14. 61. Soppina, V., et al., Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Proc Natl Acad Sci U S A, 2009. 106(46): p. 19381-6. 62. Ou, C.Y., et al., Two cyclin-dependent kinase pathways are essential for polarized trafficking of presynaptic components. Cell, 2010. 141(5): p. 846-58.
|