|
1. Spry, C.J., The pathogenesis of endomyocardial fibrosis: the role of the eosinophil. Springer Semin Immunopathol, 1989. 11(4): p. 471-7. 2. Broide, D.H., et al., Evidence of ongoing mast cell and eosinophil degranulation in symptomatic asthma airway. J Allergy Clin Immunol, 1991. 88(4): p. 637-48. 3. Silberstein, D.S., Eosinophil function in health and disease. Crit Rev Oncol Hematol, 1995. 19(1): p. 47-77. 4. Guilpain, P., L. Guillevin, and L. Mouthon, [Eosinophil granule cationic proteins: eosinophil activation markers]. Rev Med Interne, 2006. 27(5): p. 406-8. 5. Slifman, N.R., et al., Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein. J Immunol, 1986. 137(9): p. 2913-7. 6. Khakzad, M.R., et al., Is serum or sputum eosinophil cationic protein level adequate for diagnosis of mild asthma? Iran J Allergy Asthma Immunol, 2009. 8(3): p. 155-60. 7. Koh, G.C., et al., Eosinophil cationic protein: is it useful in asthma? A systematic review. Respir Med, 2007. 101(4): p. 696-705. 8. Niccoli, G., et al., Eosinophil cationic protein: A new biomarker of coronary atherosclerosis. Atherosclerosis. 211(2): p. 606-11. 9. Venge, P., et al., Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy, 1999. 29(9): p. 1172-86. 10. Badar, A., et al., Correlation of eosinophil cationic protein with severity of asthma. J Ayub Med Coll Abbottabad, 2004. 16(3): p. 66-71. 11. Hallgren, R., A. Terent, and P. Venge, Eosinophil cationic protein (ECP) in the cerebrospinal fluid. J Neurol Sci, 1983. 58(1): p. 57-71. 12. Driss, V., et al., TLR2-dependent eosinophil interactions with mycobacteria: role of alpha-defensins. Blood, 2009. 113(14): p. 3235-44. 13. Lehrer, R.I., et al., Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol, 1989. 142(12): p. 4428-34. 14. Torrent, M., et al., Bactericidal and membrane disruption activities of the eosinophil cationic protein are largely retained in an N-terminal fragment. Biochem J, 2009. 421(3): p. 425-34. 15. Hamann, K.J., et al., In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins. J Immunol, 1990. 144(8): p. 3166-73. 16. Choi, J., et al., The role of TNF-alpha in eosinophilic inflammation associated with RSV bronchiolitis. Pediatr Allergy Immunol. 21(3): p. 474-9. 17. Domachowske, J.B., et al., Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res, 1998. 26(14): p. 3358-63. 18. Maeda, T., et al., Growth inhibition of mammalian cells by eosinophil cationic protein. Eur J Biochem, 2002. 269(1): p. 307-16. 19. Motojima, S., et al., Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro. Am Rev Respir Dis, 1989. 139(3): p. 801-5. 20. Carreras, E., et al., Surface-exposed amino acids of eosinophil cationic protein play a critical role in the inhibition of mammalian cell proliferation. Mol Cell Biochem, 2005. 272(1-2): p. 1-7. 21. Bystrom, J., K. Amin, and D. Bishop-Bailey, Analysing the eosinophil cationic protein--a clue to the function of the eosinophil granulocyte. Respir Res. 12: p. 10. 22. Woschnagg, C., J. Rubin, and P. Venge, Eosinophil cationic protein (ECP) is processed during secretion. J Immunol, 2009. 183(6): p. 3949-54. 23. Hamann, K.J., et al., Structure and chromosome localization of the human eosinophil-derived neurotoxin and eosinophil cationic protein genes: evidence for intronless coding sequences in the ribonuclease gene superfamily. Genomics, 1990. 7(4): p. 535-46. 24. Garcia-Mayoral, M.F., et al., NMR structural determinants of eosinophil cationic protein binding to membrane and heparin mimetics. Biophys J. 98(11): p. 2702-11. 25. Barker, R.L., et al., Eosinophil cationic protein cDNA. Comparison with other toxic cationic proteins and ribonucleases. J Immunol, 1989. 143(3): p. 952-5. 26. Fan, T.C., et al., Characterization of molecular interactions between eosinophil cationic protein and heparin. J Biol Chem, 2008. 283(37): p. 25468-74. 27. Navarro, S., et al., The cytotoxicity of eosinophil cationic protein/ribonuclease 3 on eukaryotic cell lines takes place through its aggregation on the cell membrane. Cell Mol Life Sci, 2008. 65(2): p. 324-37. 28. Sasisekharan, R., et al., Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer, 2002. 2(7): p. 521-8. 29. Hacker, U., K. Nybakken, and N. Perrimon, Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol, 2005. 6(7): p. 530-41. 30. Lander, A.D., C.S. Stipp, and J.K. Ivins, The glypican family of heparan sulfate proteoglycans: major cell-surface proteoglycans of the developing nervous system. Perspect Dev Neurobiol, 1996. 3(4): p. 347-58. 31. Presta, M., et al., Heparin derivatives as angiogenesis inhibitors. Curr Pharm Des, 2003. 9(7): p. 553-66. 32. Kolset, S.O. and M. Salmivirta, Cell surface heparan sulfate proteoglycans and lipoprotein metabolism. Cell Mol Life Sci, 1999. 56(9-10): p. 857-70. 33. Jasuja, R., et al., Cell-surface heparan sulfate proteoglycans potentiate chordin antagonism of bone morphogenetic protein signaling and are necessary for cellular uptake of chordin. J Biol Chem, 2004. 279(49): p. 51289-97. 34. Colin, S., et al., In vivo involvement of heparan sulfate proteoglycan in the bioavailability, internalization, and catabolism of exogenous basic fibroblast growth factor. Mol Pharmacol, 1999. 55(1): p. 74-82. 35. Shafti-Keramat, S., et al., Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol, 2003. 77(24): p. 13125-35. 36. Dreyfuss, J.L., et al., Heparan sulfate proteoglycans: structure, protein interactions and cell signaling. An Acad Bras Cienc, 2009. 81(3): p. 409-29. 37. Blackhall, F.H., et al., Heparan sulfate proteoglycans and cancer. Br J Cancer, 2001. 85(8): p. 1094-8. 38. Laurents, D.V., et al., The (1)H, (13)C, (15)N resonance assignment, solution structure, and residue level stability of eosinophil cationic protein/RNase 3 determined by NMR spectroscopy. Biopolymers, 2009. 91(12): p. 1018-28. 39. Torrent, M., et al., Topography studies on the membrane interaction mechanism of the eosinophil cationic protein. Biochemistry, 2007. 46(3): p. 720-33. 40. Shai, Y., Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta, 1999. 1462(1-2): p. 55-70. 41. Torrent, M., et al., Eosinophil cationic protein aggregation: identification of an N-terminus amyloid prone region. Biomacromolecules. 11(8): p. 1983-90. 42. Torrent, M., et al., Eosinophil cationic protein high-affinity binding to bacteria-wall lipopolysaccharides and peptidoglycans. Biochemistry, 2008. 47(11): p. 3544-55. 43. van Meer, G., D.R. Voelker, and G.W. Feigenson, Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol, 2008. 9(2): p. 112-24. 44. Di Paolo, G. and P. De Camilli, Phosphoinositides in cell regulation and membrane dynamics. Nature, 2006. 443(7112): p. 651-7. 45. Lin, T.W., Functional Characterization and Molecular Machanisms of Heparin-binding Motifs of Eosinophil Cationic Protein. National Tsing Hui University Master Thesis, 2009. 46. Hsu, C.Y., Localization and Functional Characterization of Heparin/Heparin sulfate Binding Peptides of Eosinophil Cationic Protein. National Tsing Hui University Master Thesis, 2009. 47. Cardin, A.D. and H.J. Weintraub, Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis, 1989. 9(1): p. 21-32. 48. NEASFan, T.C., et al., A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic, 2007. 8(12): p. 1778-95. 49. Chang, K.C., et al., TNF-alpha mediates eosinophil cationic protein-induced apoptosis in BEAS-2B cells. BMC Cell Biol. 11: p. 6. 50. Fan, T.C., et al., A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic, 2007. 8(12): p. 1778-95. 51. Boix, E., et al., Kinetic and product distribution analysis of human eosinophil cationic protein indicates a subsite arrangement that favors exonuclease-type activity. J Biol Chem, 1999. 274(22): p. 15605-14. 52. Calabro, A., et al., Microanalysis of enzyme digests of hyaluronan and chondroitin/dermatan sulfate by fluorophore-assisted carbohydrate electrophoresis (FACE). Glycobiology, 2000. 10(3): p. 273-81. 53. Puck, T.T. and F.T. Kao, Genetics of somatic mammalian cells, VI, use of an antimetabolite in analysis of gene multiplicity. Proc Natl Acad Sci U S A, 1968. 60(2): p. 561-8. 54. Lidholt, K., et al., A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc Natl Acad Sci U S A, 1992. 89(6): p. 2267-71. 55. Esko, J.D., Animal cell mutants defective in heparan sulfate polymerization. Adv Exp Med Biol, 1992. 313: p. 97-106. 56. Ishizuka, I., Chemistry and functional distribution of sulfoglycolipids. Prog Lipid Res, 1997. 36(4): p. 245-319. 57. Gandhi, N.S. and R.L. Mancera, The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des, 2008. 72(6): p. 455-82. 58. Amand, H.L., et al., Binding of cell-penetrating penetratin peptides to plasma membrane vesicles correlates directly with cellular uptake. Biochim Biophys Acta. 1808(7): p. 1860-7. 59. Fromm, J.R., et al., Differences in the interaction of heparin with arginine and lysine and the importance of these basic amino acids in the binding of heparin to acidic fibroblast growth factor. Arch Biochem Biophys, 1995. 323(2): p. 279-87. 60. Torrent, M., M.V. Nogues, and E. Boix, Eosinophil cationic protein (ECP) can bind heparin and other glycosaminoglycans through its RNase active site. J Mol Recognit. 61. Domachowske, J.B., et al., Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis, 1998. 177(6): p. 1458-64. 62. Singh, A. and J.K. Batra, Role of unique basic residues in cytotoxic, antibacterial and antiparasitic activities of human eosinophil cationic protein. Biol Chem. 392(4): p. 337-46. 63. Caesar, C.E., et al., Membrane interactions of cell-penetrating peptides probed by tryptophan fluorescence and dichroism techniques: correlations of structure to cellular uptake. Biochemistry, 2006. 45(24): p. 7682-92. 64. Zhang, W. and S.O. Smith, Mechanism of penetration of Antp(43-58) into membrane bilayers. Biochemistry, 2005. 44(30): p. 10110-8. 65. Christiaens, B., et al., Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes. Eur J Biochem, 2002. 269(12): p. 2918-26. 66. Tkachenko, E., et al., Fibroblast growth factor 2 endocytosis in endothelial cells proceed via syndecan-4-dependent activation of Rac1 and a Cdc42-dependent macropinocytic pathway. J Cell Sci, 2004. 117(Pt 15): p. 3189-99. 67. Simons, K. and D. Toomre, Lipid rafts and signal transduction. Nat Rev Mol Cell Biol, 2000. 1(1): p. 31-9. 68. Calder, P.C. and P. Yaqoob, Lipid rafts--composition, characterization, and controversies. J Nutr, 2007. 137(3): p. 545-7. 69. Yoshida, S., et al., Sequential signaling in plasma-membrane domains during macropinosome formation in macrophages. J Cell Sci, 2009. 122(Pt 18): p. 3250-61. 70. Hilpela, P., M.K. Vartiainen, and P. Lappalainen, Regulation of the actin cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3. Curr Top Microbiol Immunol, 2004. 282: p. 117-63. 71. Carreras, E., et al., Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein. Biochemistry, 2003. 42(22): p. 6636-44. 72. Wu, W.S., Functional Characterization of Heparin Binding Regions in Human Eosinophil Cationic Protein. National Tsing Hua University Master Thesis, 2010. 73. Kersemans, V., K. Kersemans, and B. Cornelissen, Cell penetrating peptides for in vivo molecular imaging applications. Curr Pharm Des, 2008. 14(24): p. 2415-47. 74. Liu, Y., et al., Elevation of sulfatides in ovarian cancer: an integrated transcriptomic and lipidomic analysis including tissue-imaging mass spectrometry. Mol Cancer. 9: p. 186. 75. Sanderson, R.D., Heparan sulfate proteoglycans in invasion and metastasis. Semin Cell Dev Biol, 2001. 12(2): p. 89-98. 76. Rosenberg, H.F., et al., Rapid evolution of a unique family of primate ribonuclease genes. Nat Genet, 1995. 10(2): p. 219-23. 77. Miyamoto, M.M., et al., Molecular systematics of higher primates: genealogical relations and classification. Proc Natl Acad Sci U S A, 1988. 85(20): p. 7627-31. 78. Cheng, G.Z., et al., Human ribonuclease 9, a member of ribonuclease A superfamily, specifically expressed in epididymis, is a novel sperm-binding protein. Asian J Androl, 2009. 11(2): p. 240-51. 79. Shimada, K., et al., Role of syndecan-1 (CD138) in cell survival of human urothelial carcinoma. Cancer Sci. 101(1): p. 155-60. 80. Zynger, D.L., et al., Expression of glypican 3 in ovarian and extragonadal germ cell tumors. Am J Clin Pathol, 2008. 130(2): p. 224-30. 81. Kurokawa, H., et al., Reduced syndecan-1 expression is correlated with the histological grade of malignancy at the deep invasive front in oral squamous cell carcinoma. J Oral Pathol Med, 2006. 35(5): p. 301-6. 82. Hrabar, D., et al., Epithelial and stromal expression of syndecan-2 in pancreatic carcinoma. Anticancer Res. 30(7): p. 2749-53. 83. Yamauchi, N., et al., The glypican 3 oncofetal protein is a promising diagnostic marker for hepatocellular carcinoma. Mod Pathol, 2005. 18(12): p. 1591-8. 84. Lo, S.L., et al., Expression of heparan sulfate in gastric carcinoma and its correlation with clinicopathological features and patient survival. J Clin Pathol. 64(2): p. 153-158. 85. Hishinuma, M., et al., Hepatocellular oncofetal protein, glypican 3 is a sensitive marker for alpha-fetoprotein-producing gastric carcinoma. Histopathology, 2006. 49(5): p. 479-86. 86. Umezu, T., et al., Glypican-3 expression predicts poor clinical outcome of patients with early-stage clear cell carcinoma of the ovary. J Clin Pathol. 63(11): p. 962-6. 87. Orosco, A., et al., Syndecan-2 affects the basal and chemotherapy-induced apoptosis in osteosarcoma. Cancer Res, 2007. 67(8): p. 3708-15. 88. Yip, G.W., M. Smollich, and M. Gotte, Therapeutic value of glycosaminoglycans in cancer. Mol Cancer Ther, 2006. 5(9): p. 2139-48. 89. Park, H., et al., Focal adhesion kinase regulates syndecan-2-mediated tumorigenic activity of HT1080 fibrosarcoma cells. Cancer Res, 2005. 65(21): p. 9899-905. 90. Tatrai, P., et al., Quantitative and qualitative alterations of heparan sulfate in fibrogenic liver diseases and hepatocellular cancer. J Histochem Cytochem. 58(5): p. 429-41. 91. Fujii, M., et al., Cytoplasmic expression of the JM403 antigen GlcA-GlcNH3+ on heparan sulfate glycosaminoglycan in mammary carcinomas--a novel proliferative biomarker for breast cancers with high malignancy. Glycoconj J. 27(7-9): p. 661-72. 92. Chen, D., et al., Syndecan-1 expression in locally invasive and metastatic prostate cancer. Urology, 2004. 63(2): p. 402-7. 93. Suzuki, E., et al., Sphingosine-dependent apoptosis: a unified concept based on multiple mechanisms operating in concert. Proc Natl Acad Sci U S A, 2004. 101(41): p. 14788-93. 94. Spiegel, S. and S. Milstien, Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol, 2003. 4(5): p. 397-407. 95. Cyster, J.G., Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol, 2005. 23: p. 127-59. 96. Park, M.T., et al., Suppression of extracellular signal-related kinase and activation of p38 MAPK are two critical events leading to caspase-8- and mitochondria-mediated cell death in phytosphingosine-treated human cancer cells. J Biol Chem, 2003. 278(50): p. 50624-34. 97. Park, M.T., et al., Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release. Blood, 2005. 105(4): p. 1724-33. 98. Tavoosi, N., et al., Molecular determinants of phospholipid synergy in blood clotting. J Biol Chem, 2011. 99. Suresh, P.S., et al., Molecular modeling of human alkaline sphingomyelinase. Bioinformation, 2011. 6(2): p. 78-82. 100. Zeidan, Y.H. and Y.A. Hannun, Translational aspects of sphingolipid metabolism. Trends Mol Med, 2007. 13(8): p. 327-36. 101. Wu, D., et al., Aging up-regulates expression of inflammatory mediators in mouse adipose tissue. J Immunol, 2007. 179(7): p. 4829-39. 102. Hannun, Y.A. and L.M. Obeid, Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol, 2008. 9(2): p. 139-50. 103. Spiegel, S. and S. Milstien, Sphingolipid metabolites: members of a new class of lipid second messengers. J Membr Biol, 1995. 146(3): p. 225-37. 104. Meyer zu Heringdorf, D., H.M. Himmel, and K.H. Jakobs, Sphingosylphosphorylcholine-biological functions and mechanisms of action. Biochim Biophys Acta, 2002. 1582(1-3): p. 178-89. 105. Desai, N.N., et al., Signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in Swiss 3T3 fibroblasts. J Cell Biol, 1993. 121(6): p. 1385-95. 106. Seufferlein, T. and E. Rozengurt, Sphingosylphosphorylcholine rapidly induces tyrosine phosphorylation of p125FAK and paxillin, rearrangement of the actin cytoskeleton and focal contact assembly. Requirement of p21rho in the signaling pathway. J Biol Chem, 1995. 270(41): p. 24343-51. 107. Hojjati, M.R., et al., Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J Biol Chem, 2005. 280(11): p. 10284-9. 108. Fujita, T., et al., Fungal metabolites. Part 12. Potent immunosuppressant, 14-deoxomyriocin, (2S,3R,4R)-(E)-2-amino-3,4-dihydroxy-2-hydroxymethyleicos-6-enoic acid and structure-activity relationships of myriocin derivatives. J Antibiot (Tokyo), 1994. 47(2): p. 216-24. 109. Ichikawa, N., et al., Binding of laminin-1 to monosialoganglioside GM1 in lipid rafts is crucial for neurite outgrowth. J Cell Sci, 2009. 122(Pt 2): p. 289-99. 110. Moon, S.K., et al., Disialoganglioside (GD3) synthase gene expression suppresses vascular smooth muscle cell responses via the inhibition of ERK1/2 phosphorylation, cell cycle progression, and matrix metalloproteinase-9 expression. J Biol Chem, 2004. 279(32): p. 33063-70. 111. Moon, S.K., S.K. Kang, and C.H. Kim, Reactive oxygen species mediates disialoganglioside GD3-induced inhibition of ERK1/2 and matrix metalloproteinase-9 expression in vascular smooth muscle cells. FASEB J, 2006. 20(9): p. 1387-95. 112. Andrews, R.K., et al., The amino Acid sequence glutamine-628 to valine-646 within the A1 repeat domain mediates binding of von Willebrand factor to bovine brain sulfatides and equine tendon collagen. Platelets, 1995. 6(5): p. 245-51. 113. Ding, Z., H. Kawashima, and M. Miyasaka, Sulfatide binding and activation of leukocytes through an L-selectin-independent pathway. J Leukoc Biol, 2000. 68(1): p. 65-72. 114. White, A.B., et al., Psychosine accumulates in membrane microdomains in the brain of krabbe patients, disrupting the raft architecture. J Neurosci, 2009. 29(19): p. 6068-77. 115. Weigert, R., et al., CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature, 1999. 402(6760): p. 429-33. 116. Pelech, S.L. and D.E. Vance, Regulation of phosphatidylcholine biosynthesis. Biochim Biophys Acta, 1984. 779(2): p. 217-51. 117. Vance, J.E., Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J Lipid Res, 2008. 49(7): p. 1377-87. 118. Shum, T.Y., N.C. Gray, and K.P. Strickland, The deacylation of phosphatidylinositol by rat brain preparations. Can J Biochem, 1979. 57(12): p. 1359-67. 119. Redfern, D.A. and A. Gericke, pH-dependent domain formation in phosphatidylinositol polyphosphate/phosphatidylcholine mixed vesicles. J Lipid Res, 2005. 46(3): p. 504-15. 120. Garcia, M.C., et al., Effect of docosahexaenoic acid on the synthesis of phosphatidylserine in rat brain in microsomes and C6 glioma cells. J Neurochem, 1998. 70(1): p. 24-30. 121. Hamilton, L., et al., n-3 fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids, 2000. 35(8): p. 863-9. 122. Kim, H.Y., J. Bigelow, and J.H. Kevala, Substrate preference in phosphatidylserine biosynthesis for docosahexaenoic acid containing species. Biochemistry, 2004. 43(4): p. 1030-6. 123. Xu, Y., et al., Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA, 1998. 280(8): p. 719-23. 124. Moolenaar, W.H., LPA: a novel lipid mediator with diverse biological actions. Trends Cell Biol, 1994. 4(6): p. 213-9. 125. Xu, Y., Sphingosylphosphorylcholine and lysophosphatidylcholine: G protein-coupled receptors and receptor-mediated signal transduction. Biochim Biophys Acta, 2002. 1582(1-3): p. 81-8. 126. Birkeland, H.C. and H. Stenmark, Protein targeting to endosomes and phagosomes via FYVE and PX domains. Curr Top Microbiol Immunol, 2004. 282: p. 89-115. 127. Araki, N., et al., Effect of 3-methyladenine on the fusion process of macropinosomes in EGF-stimulated A431 cells. Cell Struct Funct, 2006. 31(2): p. 145-57. 128. Odorizzi, G., M. Babst, and S.D. Emr, Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem Sci, 2000. 25(5): p. 229-35. 129. Godi, A., et al., FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol, 2004. 6(5): p. 393-404. 130. Lecompte, O., O. Poch, and J. Laporte, PtdIns5P regulation through evolution: roles in membrane trafficking? Trends Biochem Sci, 2008. 33(10): p. 453-60. 131. Martin, T.F., et al., The role of PtdIns(4,5)P2 in exocytotic membrane fusion. Biochem Soc Trans, 1997. 25(4): p. 1137-41. 132. Dong, X.P., et al., PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun. 1: p. 38. 133. Johnson, R.J., et al., Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein. J Mol Biol, 2007. 368(2): p. 434-49. 134. Gleich, G.J., et al., Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci U S A, 1986. 83(10): p. 3146-50. 135. Gabay, J.E., et al., Antibiotic proteins of human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A, 1989. 86(14): p. 5610-4. 136. Seno, M., et al., Molecular cloning and expression of human ribonuclease 4 cDNA. Biochim Biophys Acta, 1995. 1261(3): p. 424-6. 137. Saxena, S.K., et al., Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily. J Biol Chem, 1992. 267(30): p. 21982-6. 138. Rosenberg, H.F. and K.D. Dyer, Molecular cloning and characterization of a novel human ribonuclease (RNase k6): increasing diversity in the enlarging ribonuclease gene family. Nucleic Acids Res, 1996. 24(18): p. 3507-13. 139. Huang, Y.C., et al., The flexible and clustered lysine residues of human ribonuclease 7 are critical for membrane permeability and antimicrobial activity. J Biol Chem, 2007. 282(7): p. 4626-33. 140. Zhang, J., K.D. Dyer, and H.F. Rosenberg, RNase 8, a novel RNase A superfamily ribonuclease expressed uniquely in placenta. Nucleic Acids Res, 2002. 30(5): p. 1169-75. 141. Liu, J., et al., Cloning, expression and location of RNase9 in human epididymis. BMC Res Notes, 2008. 1: p. 111. 142. Nassar, A.E. and P.E. Adams, Metabolite characterization in drug discovery utilizing robotic liquid-handling, quadruple time-of-flight mass spectrometry and in-silico prediction. Curr Drug Metab, 2003. 4(4): p. 259-71. 143. Cho, S., J.J. Beintema, and J. Zhang, The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories. Genomics, 2005. 85(2): p. 208-20. 144. Gerhard, D.S., et al., The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res, 2004. 14(10B): p. 2121-7.
|