跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王俊修
研究生(外文):Wang, Chun-Hsiu
論文名稱:固態氧化物燃料電池之燃料重組與二氧化碳及氮氧化物還原之研究
論文名稱(外文):Study on fuel reforming and reduction of CO2 & NOx via solid oxide fuel cell
指導教授:黃大仁黃大仁引用關係
指導教授(外文):Huang, Ta-Jen
口試委員:葉君隸呂世源汪上曉竇維平
口試日期:2011-6-17
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:183
中文關鍵詞:電化學反應機構直接甲烷故態氧化物燃料電池直接丙烷故態氧化物燃料電池二氧化氮電化學還原一氧化氮電化學還原汽車廢氣減排處理
相關次數:
  • 被引用被引用:2
  • 點閱點閱:573
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要是研究以甲烷或丙烷直接當做陽極支撐型固態氧化物燃料電池(SOFC)的陽極進料,探討燃料於陽極支撐層的反應機制。本實驗以Ni/YSZ當陽極支撐層,發現以甲烷為燃料時,電流的生成反應主要是來自氧離子是與甲烷解離後所產生碳,且可穩定輸出無衰退現象。當以丙烷為進料時,依然可以產生穩定的電流輸出,即無衰退現象,而主要出口產物為氫氣、一氧化碳和甲烷。由EDX分析發現積碳量隨著愈靠近電解質愈少,當小於80 μm時已無積碳生成。
當電池經過活化程序後,電池性能會有提升的現象,而在陽極會有奈米鎳的生成。由於陽極在電化學反應時,會將原本較大顆粒的氧化鎳細化成許多奈米級的鎳,導致三相點增多,以至於活性會提升,但是電池活性提升會有一極限值,即鎳的細化程度會達到平衡值,而相關的奈米增生效應循環反應方程式為: (1) NiO + H2 → Ni + H2O ; (2) Ni + O2- → NiO + 2e-。由無燃料電流實驗證實鎳在陽極的角色不在只是觸媒,而還可以當反應物參與反應,這也直接證明了上式(2)在電化學反應中的存在。若停止了電化學的反應,陽極增生的奈米鎳在800oC下會聚集成海綿狀結構,由高倍率的SEM分析可以看出此海綿狀結構是由許多奈米顆粒所組成,這代表了停止了電化學反應的供輸,即破壞了奈米鎳在陽極的穩定機制。當再一次的在1400 oC燒結,海綿狀結構內的晶界會融合長大成一體,即可以將海綿狀結構回復成原本剛製作成的陽極結構,然而因為晶格的遷移成長,會造成陽極有許多的大洞和裂縫生成。
CO2於SOFC陰極的直接解離反應於900 oC可有27 %的轉化率,且同時可輸出3.1 mW/cm2的電功率。陰極流速對CO2解離的轉化率存有一最佳值。電化學促進效應於SOFC上同時包含了電壓和電流效應。法拉第效率隨著溫度升高而降低,且隨著操作電壓提高而變大。於高溫和低電壓下,電流效應對於電化學促進的影響將會大於電壓效應。SOFC的開路電壓(OCV)應與陰極氧氣氛濃度有關,且氧氣的添加會抑制CO2的解離。
NO於SOFC陰極可行直接解離反應,並生成N2和O2。而用於產生氧離子的氧物種遠小於生成的氧氣,即法拉第效率大於1,這表示有電化學促進的效果。反應溫度愈低,電化學使用效率愈高。氧氣的添加於800 oC時會抑制NO的解離,然而氧濃度對於NO的轉化率影響會有一轉折點。560 ppm NO2或9000 ppm NO以流速200 ml/min於GDC-LSM陰極700 oC反應下可達100%。
SOFC應用於模擬廢氣反應裡,NO轉化率對會隨著NO濃度分佈存有一V形反轉的趨勢,即轉化率皆會隨著濃度降低或濃度提高而變高。以LSM-GDC為陰極時,NO解離於400~550oC溫度區間因為受動力學控制,所以轉化率會隨著溫度提高而提高;550~700oC溫度區間因為轉為熱力學控制,轉化率會隨著溫度提高而降低;而700~800 oC溫度區間因為晶格氧會往內部補充,所以轉化率反而會隨著溫度提高而提高。氮氣生成速率隨著NOx濃度增加而變高,主要是因為反應速率會隨濃度變高;而於低NOx濃度下,氮氣生成速率幾乎為定值,代表此時為表面擴散控制所致。以LSCC-GDC為陰極時,SO2的添加會降低NOx轉化率,可能是因為SO2會毒化Cu所致,而在較低NOx濃度反應裡的影響程度較高,於高濃度NOx的影響反而較有限。SOFC電池堆應用於汽車廢氣的減排,將可達到氮氧化物的零排放。

第一章 緒論 1
第二章 文獻回顧 5
2-1. 固態氧化物燃料電池 5
2-1-1. 歷史簡介 5
2-1-2. 工作原理 6
2-2. SOFC材料組成 12
2-2-1. 電解質 12
2-2-2. 陽極 15
2-2-3. 陰極 16
2-3. 燃料於陽極內部重組之研究 18
2-4. 丙烷燃料重組反應 23
2-4-1. 陽極支撐SOFC之丙烷燃料重組反應 23
2-4-2. 丙烷乾重組之反應機構 25
2-5. 電化學促進 26
2-6. 二氧化碳之減碳處理技術簡介 32
2-7. 氮氧化物之減量處理技術 34
2-7-1. 氮氧化物之來源 34
2-7-2. 觸媒催化氮氧化物之方法 36
第三章 實驗方法與步驟 48
3-1. 實驗藥品 48
3-2. 粉體合成 49
3-2-1. YSZ粉體合成 49
3-2-2. NiO/YSZ陽極粉體合成 49
3-2-3. GDC粉體合成 49
3-2-4. NixFe粉體合成 50
3-2-5. La0.6Sr0.4Co0.8Cu0.2O3合成 50
3-3. 塗佈漿料和成 51
3-3-1. 電解質漿料 51
3-3-2. 陰極漿料 51
3-4. 陽極支撐形電池製作 52
3-5. 實驗儀器 53
3-6. 反應器裝置 54
3-7. 實驗流程 55
3-7-1. 觸媒之丙烷乾重組 55
3-7-2. SOFC電池性能測試 56
3-7-3. CO2電化學還原測試 57
3-7-4. NOx電化學還原測試 57
第四章 實驗結果與討論 58
4-1. 陽極燃料處理 58
4-1-1. 陽極支撐型SOFC之微觀圖 58
4-1-2. 直接甲烷SOFC 60
4-1-3. 直接丙烷SOFC 65
4-1-4. 鎳鐵支撐型SOFC丙烷重組模擬 73
4-2. 陽極奈米鎳增生機制探討 77
4-2-1. 電池經活化後的效能測試 77
4-2-2. 電池陽極在不同狀態下的微結構分析 82
4-2-3. 陽極於再氧化處裡的微結構變化 88
4-2-4. 無燃料電流(non-fuel current)實驗 93
4-2-5. 電化學反應生成奈米鎳機制探討 97
4-2-6. 不同定電流操作下的電性影響 101
4-3. 二氧化碳於陰極上的電化學還原研究 103
4-3-1. 二氧化碳電化學還原機制 103
4-3-2. 溫度與電壓對於二氧化碳轉化率的影響 107
4-3-3. 電化學促進於二氧化碳轉化率的影響 110
4-3-4. 電壓和電流效應的探討 114
4-3-5. 氧濃度對於電壓和二氧化碳解離的影響 117
4-4. 氮氧化物於固態氧化物陰極上的電化學還原 121
4-4-1. 電性測試 121
4-4-2. 一氧化氮解離於不同操作電壓下的影響 123
4-4-3. 氧濃度的影響 132
4-4-4. 二氧化氮的電化學還原 137
4-4-5. 模擬廢氣於LSM-GDC陰極上的電化學還原研究 141
4-4-6. 模擬廢氣於LSCC-GDC陰極上的電化學還原研究 160
第五章 結論 167
參考文獻 172

1. 黃鎮江, “燃料電池”, 全華科技圖書股份有限公司, 2005年3月二版。
2. E. Ivers-Tiffée, A.V. Virkar, in: S.C. Singhal, K. Kendall (Eds.) “High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Application”, Elsevier Science, Oxford, 229-260 (2003).
3. 衣寶廉, “燃料電池-原理與應用”, 五南圖書出版公司, 2005年3月初版
4. J. Larminie, A. Dicks, “Fuel Cell System Explained”, 1th Edition, JOHN WILEY & SONS Inc., England, (2000).
5. J. B. Goodenough, “Oxide-Ion Electrolytes”, Annual Review of Materials Research, 33, (2003) 91-128.
6. H. Inaba, H. Tagawa, “Review Ceria-based solid electrolytes”, Solid State Ionics, 83, (1996) 1-16
7. K. Kordesch, G. Simader, “Fuel Cells and Their Applications”, Wiley-VCH, New York, (1996).
8. H. J. Guindet, “Solid Oxide Fuel Cell”, CRC Handbook of Solid State Electrochemistry, (1997).
9. J. B. Goodenough, “Ceramic solid electrolytes”, Solid State Ionics, 94, (1997) 17-25.
10. J. B. Goodenough, “Oxide-ion conductors by design”, Nature, 404 (2000), 821-823.
11. Jung-Hoon Song, Sun-Il Park, Jong-Ho Lee, Ho-Sung Kim,” Fabrication characteristics of an anode-supported thin-film electrolyte fabricated by the tape casting method for IT-SOFC”, Journal of materials processing technology, 1 9 8, ( 2 0 0 8 ) 414–418.
12. K. Chen, Z. Lu, N. Li, “Fabrication and performance of anode-supported YSZ films by slurry spin coating”, Solid State Ionics, 177, (2007) 3455.
13. J. Wang, Zhe Lu, K. Chen, ect, “ Study of slurry spin coating technique parameters for the fabrication of anode-supported YSZ Films for SOFC”, Journal of power source, 164, (2007) 17-23
14. T. Ishihara, H. Matsuda, Y. Takita, “Doped LaGaO3 Perovskite type oxide as a new oxide ionic conductor”, Journal of the American Chemical Society, 116, (1994) 3801-3803.
15. S.M. Haile, “Materials for Fuel Cells,” Materials Today, 6, (2003) 24.
16. Y. Liu, S. Hashimoto, H. Nishino, K. Takei, M. Mori, “Fabrication and characterization of a co-fired La0.6Sr0.4Co0.2Fe0.8O3−δ cathode-supported Ce0.9Gd0.1O1.95 thin-film for IT-SOFCs”, Journal of Power Sources, 164 (2007) 56.
17. V.A.C. Haanappel, A. Mai, J. Mertens, “Electrode activation of anode-supported SOFCs with LSM- or LSCF-type cathodes”, Solid State Ionics, 177, (2006) 2033.
18. J.P. Mart´ınez, D.M. L´opez, D.P. Coll, J.C. Ruiz-Morales, P. N´u˜nez, “Performance of XSCoF (X = Ba, La and Sm) and LSCrX_(X_ = Mn, Fe and Al) perovskite-structure materials on LSGM electrolyte for IT-SOFC”, Electrochimica Acta, 52, 2007, 2950.
19. M.E.S. Hegarty, A.M. O’Connor, J.R.H. Ross,” Syngas production from natural gas using ZrO2-supported metals”, Catalysis Today, 42, 1998, 225.
20. S.P. Yoon, J. Han, S.W. Nam, T.H. Lim, I.H. Oh, S.A. Hong, “Performance of anode-supported solid oxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol-gel coating technique”, J. Power Sources, 106, 2002, 160.
21. N. Robertson and J.N. Michaels, “Oxygen exchange on platinum electrodes in zirconia cells; Location of electrochemical reaction sites”, Journal of the Electrochemical Society, 137, (1990) 129-135.
22. 黃瑞銘, “直接甲烷固態氧化物燃料電池之積碳與去積碳研究”, 清華大學化工所碩士論文, 民國九十五年。
23. 陳冠蓉, “以Ni-SDC為陽極材料之固態氧化物燃料電池研究”, 清華大學化工所 碩士論文,民國九十四年。
24. Andre Weber, Ellen Ivers-Tiffee, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications”, Journal of Power Sources, 127, (2004) 273-283.
25. Bo Huang, S.R. Wang, R.Z. Liu, T.L. Wen, “Preparation and performance characterization of the Fe–Ni/ScSZ cermet anode for oxidation of ethanol fuel in SOFCs,” Journal of Power Sources, 167, (2007) 288–294.
26. Zhen Xie, Wei Zhu, Baichuan Zhu, “FexCo0.5−xNi0.5–SDC anodes for low-temperature solid oxide fuel cells,“ Electrochimica Acta, 51, (2006) 3052–3057.
27. Tatsumi Ishihara, Jingwang Yan, Masashi Shinagawa,” Ni–Fe bimetallic anode as an active anode for intermediate temperature SOFC using LaGaO3 based electrolyte film,” Electrochimica Acta, 52, (2006) 1645–1650.
28. X.C. Lu, J.H. Zhu, “Ni–Fe + SDC composite as anode material for intermediate temperature solid oxide fuel cell,” Journal of Power Sources, 165, (2007) 678–684.
29. 王俊修, “以氧化釓添加氧化鈰為擔體擔載鎳和鐵觸媒行甲烷反應後的自身去積碳行為之研究”, 清華大學化工所碩士論文, 民國九十五年。
30. Ethan S. Hecht, “Methane reforming kinetics within a Ni–YSZ SOFC anode support,” Applied Catalysis A: General, 295, (2005) 40–51.
31. Takashi Hibino, Atsuko Hashimoto, Takao Inoue, “A Low-Operating-Temperature Solid Oxide Fuel Cell in Hydrocarbon-Air Mixtures,” Science, 288 (2000) 2031.
32. Zhongliang Zhan and Scott A. Barnett, “An Octane-Fueled Solid Oxide Fuel Cell,” Science, 308, (2005) 844
33. 黃盟欽, “直接甲烷固態氧化物燃料電池之特性研究”, 清華大學化工所博士論文, 民國九十七年。
34. M.B. Jensen, L.B. Raberg, “Mechanistic study of the dry reforming of propane to synthesis gas over a Ni/Mg(Al)O catalyst”, Catalysis Today, 145, (2009) 114-120.
35. N. Laosiripojana, “Catalytic steam reforming of ethane and propane over CeO2-doped Ni/Al2O3 at SOFC temperature: Improvement of resistance toward carbon formation by the redox property of doping CeO2”, Fuel, 85, (2006) 323-332.
36. N. Laosiripojana, S. Assabumrungrat, “Hydrogen production from steam and autothermal reforming of LPG over high surface area ceria”, Journal of Power Sources, 158, (2006) 1348–1357.
37. Kelfin M. Hardiman, “Performance of a Co-Ni catalyst for propane reforming under low steam-to-carbon ratios”, Chemical Engineering Journal, 102, (2004) 119–130.
38. M.B. Jensen, L.B. Raberg, “Mechanistic study of the dry reforming of propane to synthesis gas over a Ni/Mg(Al)O catalyst,” Catalysis Today, 145, (2009) 114–120.
39. S. Bebelis, C.G. Vayenas, “Non-faradaic electrochemical modification of catalytic activity”, Journal of Catalysis, 182, (1999) 37–47.
40. C. Karavasilis, S. Bebelis, C.G. Vayenas, “Non-faradaic electrochemical modification of catalytic activity: X. ethylene epoxidation on Ag deposited on stabilized ZrO2 in the presence of chl orine moderators”, Journal of Catalysis 160, (1996) 190–204.
41. D. Tsiplakides, C.G. Vayenas, “Temperature Programmed Desorption of Oxygen from Ag Films Interfaced with Y2O3-Doped ZrO2”, Journal of Catalysis 185, (1999) 237–251.
42. C. Pliangos, I.V. Yentekakis, S. Ladas, C.G. Vayenas, “Non-faradaic electrochemical modification of catalytic activity”, Journal of Catalysis 171, (1997) 148–159.
43. S. Bebelis, M. Makri, A. Buekenhoudt, J. Luyten, S. Brosda, P. Petrolekas, C. Pliangos, C.G.Vayenas, “Electrochemical activation of catalytic reactions using anionic, cationic and mixed conductors”, Solid State Ionics, 129, (200) 33–38.
44. J. B. Wang, H. K. Lee and T. J. Huang, “Synergistic Catalysis of Carbon Dioxide Hydrogenation into Methanol by Yttria-Doped Ceria/γ-Alumina-Supported Copper Oxide Catalysts: Effect of Support and Dopant”, Catal. Lett. 83, (2002) 79-86.
45. K. Hashimoto, H. Habazaki, M. Yamasaki, S. Meguro, T. Sasaki, H. Katagiri, Matsui, T. K. Fujimura, K. Izumiya, N. Kumagai, and E. Akiyama, “Advanced materials for global carbon dioxide recycling”, Mater. Sci. Eng. A, 304-306, (2001) 88-96.
46. J.B. Wang, Y. L. Tai, W. P. Dow and T.J. Huang, “Study of ceria-supported nickel catalyst and effect of yttria doping on carbon dioxide reforming of methane”, Appl. Catal. A: Gen. 218, (2001) 69-79.
47. J.B. Wang, Hsiao S.Z. and T.J. Huang, “Study of carbon dioxide reforming of methane over Ni/yttria-doped ceria and effect of thermal treatments of support on the activity behaviors”, Appl. Catal. A: Gen. 246, (2003) 197-211.
48. J.B. Wang, L. E. Kuo and T.J. Huang, “Study of carbon dioxide reforming of methane over bimetallic Ni-Cr/yttria-doped ceria catalysts”, Appl. Catal. A: Gen. 249, (2003) 93-105.
49. J.B. Wang, Y.S. Wu and T.J. Huang, “Effects of carbon deposition and de-coking treatments on the activation of CH4 and CO2 in CO2 reforming of CH4 over Ni/yttria-doped ceria catalysts”, Appl. Catal. A: Gen. 272, (2004) 289-298.
50. T.J. Huang., H. J. Lin and T.C. Yu, “A comparison of oxygen-vacancy effect on activity behaviors of carbon dioxide and steam reforming of methane over supported nickel catalysts”, Catal. Lett. 105, (2005) 239-247.
51. J. Lee, and Y. Tak, “Electrocatalytic activity of Cu electrode in electroreduction of CO2”, Electrochim. Acta, 46, (2001) 3015-3022.
52. M. Gattrell, N. Gupta, and A. Co, “A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper”, J. Electroanal. Chem. 594, (2006) 1-19.
53. S. Kaneco, K. Iiba, H. Katsumata, T. Suzuki, and K. Ohta, “Electrochemical reduction of high pressure carbon dioxide at a Cu electrode in cold methanol with CsOH supporting salt”, Chem. Eng. J. 128, (2007) 47-50.
54. M. Tsuji, T. Yamamoto, Y. Tamaura, T. Kodama, Y. Kitayama, “Catalytic acceleration for CO2 decomposition into carbon by Rh, Pt or Ce impregnation onto Ni(II)-bearing ferrite”, Appl. Catal. A: Gen. 142, (1996) 31-45.
55. C.L. Zhang, S. Li, T.H. Wu, S.Y. Peng, “Reduction of carbon dioxide into carbon by the active wustite and the mechanism of the reaction”, Mater. Chem. Phys, 58, (1999) 139-145.
56. T. J. Huang, T.C. Yu, “Effect of steam and carbon dioxide pretreatments on methane decomposition and carbon gasification over doped-ceria supported nickel catalyst”, Catal. Lett. 102, (2005) 175-181.
57. T.J. Huang, C.L. Chou, “Electrochemical CO2 reduction with power generation in SOFCs with Cu-added LSCF–GDC cathode”, Electrochem. Commun. 11, (2009) 1464-1467.
58. K. Kammer, “Electrochemical DeNOx in solid electrolyte cells—an overview”, Applied Catalysis B: Environmental, 58, (2005) 33–39.
59. S. Roy, M.S. Hegde, G. Madras, “Catalysis for NOx abatement”, Applied Energy, 86, (2009) 2283–2297.
60. A.C.A. Vooys, M.T.M. Koper, R.A. Santen, J.A.R. Veen, “Mechanistic study on the electrocatalytic reduction of nitric oxide on transition-metal electrodes”, Journal of Catalysis, 202, (2001) 387–394.
61. A.C.A. Vooys, M.T.M. Koper, R.A. Santen, J.A.R. Veen, “Mechanisms of electrochemical reduction and oxidation of nitric oxide”, Electrochimica Acta, 49, (2004) 1307–1314.
62. E.D. Wachsmana, P. Jayaweerab, G. Krishnanb, A. Sanjurjob, “Electrocatalytic reduction of NO on La A B B9O : x 12x x 12y y 32d evidence of electrically enhanced activity”, Solid State Ionics ,136–137, (2000) 775–782.
63. C.N. Costa, P.G. Savva, C. Andronikou, P.S. Lambrou, K. Polychronopoulou, V.C. Belessi, V.N. Stathopoulos, P.J. Pomonis, and A.M. Efstathiou, “An Investigation of the NO/H2/O2 (Lean De-NOx) Reaction on a Highly Active and Selective Pt/La0.7Sr0.2Ce0.1FeO3 Catalyst at Low Temperatures”, Journal of Catalysis, 209, (2002) 456–471.
64. S. Roy, M.S. Hegde, G. Madras, “Catalysis for NOx abatement”, Applied Energy, 86, (2009) 2283–2297.
65. H.J.Hwanga, J.W. Moonb, M. Awanoc, “Fabrication of novel type solid electrolyte membrane reactors for exhaust gas purification”, Journal of the European Ceramic Society, 24, (2004) 1325–1328.
66. F. Garin, “Environmental catalysis”, Catalysis Today, 89, (2004) 255–268.
67. J. H. Koh, B.S. Kang, H. C. Lim, Y.S. Yoo, “Thermodynamic Analysis of Carbon Deposition and Electrochemical Oxidation of Methane for SOFC Anodes “Electrochem. Solid-State Lett., 4, (2001) A12-A15.
68. M.B. Jensen, L.B. Raberg, “Mechanistic study of the dry reforming of propane to synthesis gas over a Ni/Mg(Al)O catalyst”, Catalysis Today, 145, (2009) 114-120.
69. N. Laosiripojana, “Catalytic steam reforming of ethane and propane over CeO2-doped Ni/Al2O3 at SOFC temperature: Improvement of resistance toward carbon formation by the redox property of doping CeO2”, Fuel, 85, (2006) 323-332.
70. N. Laosiripojana, S. Assabumrungrat, “Hydrogen production from steam and autothermal reforming of LPG over high surface area ceria”, Journal of Power Sources, 158, (2006) 1348–1357.
71. Kelfin M. Hardiman, “Performance of a Co-Ni catalyst for propane reforming under low steam-to-carbon ratios”, Chemical Engineering Journal, 102, (2004) 119–130.
72. D. Simwonis, F. Tietz & D. Stover, “Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells”. Solid State Ionics, 132, (2000) 241–251.
73. J. Malzbender, E. Wessel & R.W. Steinbrech, “Reduction and re-oxidation of anode for solid oxide fuel cells”. Solid State Ionics, 176, (2005) 2201-2203.
74. H. Itoh, T. Yamamoto, M. Mori, “Configurational and Electrical Behavior of Ni-YSZ Cermet with Novel Microstructure for Solid Oxide Fuel Cell Anodes”. J. Electrochem. Soc., 144, (1997) 641-645.
75. D. Sarantaridis1 & A. Atkinson, “Redox Cycling of Ni-Based Solid Oxide Fuel Cell Anodes: A Review”. Fuel Cells, 7 (2007) 246-258.
76. J. L. Young et al., in SOFC X, K. Eguchi, S.C. Singhal, H. Yokokawa & J. Mizusaki (Editors), “Understanding Nickel Oxidation and Reduction Processes in SOFC Systems” , The Electrochemical Society Proceedings Series, Pennington, NJ Vol.7, (2007) 1511-1519.
77. S.O. Moussaa & K. Morsi, “High-temperature oxidation of reactively processed nickel aluminide intermetallics”. J. All. & Comp., 426, (2006) 136–143.
78. 周建良, “以La0.58Sr0.4Co0.2Fe0.8O3-δ為固態氧化物燃料電池陰極材料之研究”, 清華大學化工所博士論文, 民國九十八年。
79. C.G. Vayenas, S. Ladas, S. Bebelis, I.V. Yentekakis, S. Neophytidesa, Jiang Yi, Ch. Karavasilis C. Pliangos,” Electrochemical promotion in catalysis: non-faradaic electrochemical modification of catalytic activity“, Electrochimica Acta, 39 (1994) 1849-1855.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top