1. 黃鎮江, “燃料電池”, 全華科技圖書股份有限公司, 2005年3月二版。
2. E. Ivers-Tiffée, A.V. Virkar, in: S.C. Singhal, K. Kendall (Eds.) “High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Application”, Elsevier Science, Oxford, 229-260 (2003).
3. 衣寶廉, “燃料電池-原理與應用”, 五南圖書出版公司, 2005年3月初版
4. J. Larminie, A. Dicks, “Fuel Cell System Explained”, 1th Edition, JOHN WILEY & SONS Inc., England, (2000).
5. J. B. Goodenough, “Oxide-Ion Electrolytes”, Annual Review of Materials Research, 33, (2003) 91-128.
6. H. Inaba, H. Tagawa, “Review Ceria-based solid electrolytes”, Solid State Ionics, 83, (1996) 1-16
7. K. Kordesch, G. Simader, “Fuel Cells and Their Applications”, Wiley-VCH, New York, (1996).
8. H. J. Guindet, “Solid Oxide Fuel Cell”, CRC Handbook of Solid State Electrochemistry, (1997).
9. J. B. Goodenough, “Ceramic solid electrolytes”, Solid State Ionics, 94, (1997) 17-25.
10. J. B. Goodenough, “Oxide-ion conductors by design”, Nature, 404 (2000), 821-823.
11. Jung-Hoon Song, Sun-Il Park, Jong-Ho Lee, Ho-Sung Kim,” Fabrication characteristics of an anode-supported thin-film electrolyte fabricated by the tape casting method for IT-SOFC”, Journal of materials processing technology, 1 9 8, ( 2 0 0 8 ) 414–418.
12. K. Chen, Z. Lu, N. Li, “Fabrication and performance of anode-supported YSZ films by slurry spin coating”, Solid State Ionics, 177, (2007) 3455.
13. J. Wang, Zhe Lu, K. Chen, ect, “ Study of slurry spin coating technique parameters for the fabrication of anode-supported YSZ Films for SOFC”, Journal of power source, 164, (2007) 17-23
14. T. Ishihara, H. Matsuda, Y. Takita, “Doped LaGaO3 Perovskite type oxide as a new oxide ionic conductor”, Journal of the American Chemical Society, 116, (1994) 3801-3803.
15. S.M. Haile, “Materials for Fuel Cells,” Materials Today, 6, (2003) 24.
16. Y. Liu, S. Hashimoto, H. Nishino, K. Takei, M. Mori, “Fabrication and characterization of a co-fired La0.6Sr0.4Co0.2Fe0.8O3−δ cathode-supported Ce0.9Gd0.1O1.95 thin-film for IT-SOFCs”, Journal of Power Sources, 164 (2007) 56.
17. V.A.C. Haanappel, A. Mai, J. Mertens, “Electrode activation of anode-supported SOFCs with LSM- or LSCF-type cathodes”, Solid State Ionics, 177, (2006) 2033.
18. J.P. Mart´ınez, D.M. L´opez, D.P. Coll, J.C. Ruiz-Morales, P. N´u˜nez, “Performance of XSCoF (X = Ba, La and Sm) and LSCrX_(X_ = Mn, Fe and Al) perovskite-structure materials on LSGM electrolyte for IT-SOFC”, Electrochimica Acta, 52, 2007, 2950.
19. M.E.S. Hegarty, A.M. O’Connor, J.R.H. Ross,” Syngas production from natural gas using ZrO2-supported metals”, Catalysis Today, 42, 1998, 225.
20. S.P. Yoon, J. Han, S.W. Nam, T.H. Lim, I.H. Oh, S.A. Hong, “Performance of anode-supported solid oxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol-gel coating technique”, J. Power Sources, 106, 2002, 160.
21. N. Robertson and J.N. Michaels, “Oxygen exchange on platinum electrodes in zirconia cells; Location of electrochemical reaction sites”, Journal of the Electrochemical Society, 137, (1990) 129-135.
22. 黃瑞銘, “直接甲烷固態氧化物燃料電池之積碳與去積碳研究”, 清華大學化工所碩士論文, 民國九十五年。23. 陳冠蓉, “以Ni-SDC為陽極材料之固態氧化物燃料電池研究”, 清華大學化工所 碩士論文,民國九十四年。24. Andre Weber, Ellen Ivers-Tiffee, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications”, Journal of Power Sources, 127, (2004) 273-283.
25. Bo Huang, S.R. Wang, R.Z. Liu, T.L. Wen, “Preparation and performance characterization of the Fe–Ni/ScSZ cermet anode for oxidation of ethanol fuel in SOFCs,” Journal of Power Sources, 167, (2007) 288–294.
26. Zhen Xie, Wei Zhu, Baichuan Zhu, “FexCo0.5−xNi0.5–SDC anodes for low-temperature solid oxide fuel cells,“ Electrochimica Acta, 51, (2006) 3052–3057.
27. Tatsumi Ishihara, Jingwang Yan, Masashi Shinagawa,” Ni–Fe bimetallic anode as an active anode for intermediate temperature SOFC using LaGaO3 based electrolyte film,” Electrochimica Acta, 52, (2006) 1645–1650.
28. X.C. Lu, J.H. Zhu, “Ni–Fe + SDC composite as anode material for intermediate temperature solid oxide fuel cell,” Journal of Power Sources, 165, (2007) 678–684.
29. 王俊修, “以氧化釓添加氧化鈰為擔體擔載鎳和鐵觸媒行甲烷反應後的自身去積碳行為之研究”, 清華大學化工所碩士論文, 民國九十五年。30. Ethan S. Hecht, “Methane reforming kinetics within a Ni–YSZ SOFC anode support,” Applied Catalysis A: General, 295, (2005) 40–51.
31. Takashi Hibino, Atsuko Hashimoto, Takao Inoue, “A Low-Operating-Temperature Solid Oxide Fuel Cell in Hydrocarbon-Air Mixtures,” Science, 288 (2000) 2031.
32. Zhongliang Zhan and Scott A. Barnett, “An Octane-Fueled Solid Oxide Fuel Cell,” Science, 308, (2005) 844
33. 黃盟欽, “直接甲烷固態氧化物燃料電池之特性研究”, 清華大學化工所博士論文, 民國九十七年。34. M.B. Jensen, L.B. Raberg, “Mechanistic study of the dry reforming of propane to synthesis gas over a Ni/Mg(Al)O catalyst”, Catalysis Today, 145, (2009) 114-120.
35. N. Laosiripojana, “Catalytic steam reforming of ethane and propane over CeO2-doped Ni/Al2O3 at SOFC temperature: Improvement of resistance toward carbon formation by the redox property of doping CeO2”, Fuel, 85, (2006) 323-332.
36. N. Laosiripojana, S. Assabumrungrat, “Hydrogen production from steam and autothermal reforming of LPG over high surface area ceria”, Journal of Power Sources, 158, (2006) 1348–1357.
37. Kelfin M. Hardiman, “Performance of a Co-Ni catalyst for propane reforming under low steam-to-carbon ratios”, Chemical Engineering Journal, 102, (2004) 119–130.
38. M.B. Jensen, L.B. Raberg, “Mechanistic study of the dry reforming of propane to synthesis gas over a Ni/Mg(Al)O catalyst,” Catalysis Today, 145, (2009) 114–120.
39. S. Bebelis, C.G. Vayenas, “Non-faradaic electrochemical modification of catalytic activity”, Journal of Catalysis, 182, (1999) 37–47.
40. C. Karavasilis, S. Bebelis, C.G. Vayenas, “Non-faradaic electrochemical modification of catalytic activity: X. ethylene epoxidation on Ag deposited on stabilized ZrO2 in the presence of chl orine moderators”, Journal of Catalysis 160, (1996) 190–204.
41. D. Tsiplakides, C.G. Vayenas, “Temperature Programmed Desorption of Oxygen from Ag Films Interfaced with Y2O3-Doped ZrO2”, Journal of Catalysis 185, (1999) 237–251.
42. C. Pliangos, I.V. Yentekakis, S. Ladas, C.G. Vayenas, “Non-faradaic electrochemical modification of catalytic activity”, Journal of Catalysis 171, (1997) 148–159.
43. S. Bebelis, M. Makri, A. Buekenhoudt, J. Luyten, S. Brosda, P. Petrolekas, C. Pliangos, C.G.Vayenas, “Electrochemical activation of catalytic reactions using anionic, cationic and mixed conductors”, Solid State Ionics, 129, (200) 33–38.
44. J. B. Wang, H. K. Lee and T. J. Huang, “Synergistic Catalysis of Carbon Dioxide Hydrogenation into Methanol by Yttria-Doped Ceria/γ-Alumina-Supported Copper Oxide Catalysts: Effect of Support and Dopant”, Catal. Lett. 83, (2002) 79-86.
45. K. Hashimoto, H. Habazaki, M. Yamasaki, S. Meguro, T. Sasaki, H. Katagiri, Matsui, T. K. Fujimura, K. Izumiya, N. Kumagai, and E. Akiyama, “Advanced materials for global carbon dioxide recycling”, Mater. Sci. Eng. A, 304-306, (2001) 88-96.
46. J.B. Wang, Y. L. Tai, W. P. Dow and T.J. Huang, “Study of ceria-supported nickel catalyst and effect of yttria doping on carbon dioxide reforming of methane”, Appl. Catal. A: Gen. 218, (2001) 69-79.
47. J.B. Wang, Hsiao S.Z. and T.J. Huang, “Study of carbon dioxide reforming of methane over Ni/yttria-doped ceria and effect of thermal treatments of support on the activity behaviors”, Appl. Catal. A: Gen. 246, (2003) 197-211.
48. J.B. Wang, L. E. Kuo and T.J. Huang, “Study of carbon dioxide reforming of methane over bimetallic Ni-Cr/yttria-doped ceria catalysts”, Appl. Catal. A: Gen. 249, (2003) 93-105.
49. J.B. Wang, Y.S. Wu and T.J. Huang, “Effects of carbon deposition and de-coking treatments on the activation of CH4 and CO2 in CO2 reforming of CH4 over Ni/yttria-doped ceria catalysts”, Appl. Catal. A: Gen. 272, (2004) 289-298.
50. T.J. Huang., H. J. Lin and T.C. Yu, “A comparison of oxygen-vacancy effect on activity behaviors of carbon dioxide and steam reforming of methane over supported nickel catalysts”, Catal. Lett. 105, (2005) 239-247.
51. J. Lee, and Y. Tak, “Electrocatalytic activity of Cu electrode in electroreduction of CO2”, Electrochim. Acta, 46, (2001) 3015-3022.
52. M. Gattrell, N. Gupta, and A. Co, “A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper”, J. Electroanal. Chem. 594, (2006) 1-19.
53. S. Kaneco, K. Iiba, H. Katsumata, T. Suzuki, and K. Ohta, “Electrochemical reduction of high pressure carbon dioxide at a Cu electrode in cold methanol with CsOH supporting salt”, Chem. Eng. J. 128, (2007) 47-50.
54. M. Tsuji, T. Yamamoto, Y. Tamaura, T. Kodama, Y. Kitayama, “Catalytic acceleration for CO2 decomposition into carbon by Rh, Pt or Ce impregnation onto Ni(II)-bearing ferrite”, Appl. Catal. A: Gen. 142, (1996) 31-45.
55. C.L. Zhang, S. Li, T.H. Wu, S.Y. Peng, “Reduction of carbon dioxide into carbon by the active wustite and the mechanism of the reaction”, Mater. Chem. Phys, 58, (1999) 139-145.
56. T. J. Huang, T.C. Yu, “Effect of steam and carbon dioxide pretreatments on methane decomposition and carbon gasification over doped-ceria supported nickel catalyst”, Catal. Lett. 102, (2005) 175-181.
57. T.J. Huang, C.L. Chou, “Electrochemical CO2 reduction with power generation in SOFCs with Cu-added LSCF–GDC cathode”, Electrochem. Commun. 11, (2009) 1464-1467.
58. K. Kammer, “Electrochemical DeNOx in solid electrolyte cells—an overview”, Applied Catalysis B: Environmental, 58, (2005) 33–39.
59. S. Roy, M.S. Hegde, G. Madras, “Catalysis for NOx abatement”, Applied Energy, 86, (2009) 2283–2297.
60. A.C.A. Vooys, M.T.M. Koper, R.A. Santen, J.A.R. Veen, “Mechanistic study on the electrocatalytic reduction of nitric oxide on transition-metal electrodes”, Journal of Catalysis, 202, (2001) 387–394.
61. A.C.A. Vooys, M.T.M. Koper, R.A. Santen, J.A.R. Veen, “Mechanisms of electrochemical reduction and oxidation of nitric oxide”, Electrochimica Acta, 49, (2004) 1307–1314.
62. E.D. Wachsmana, P. Jayaweerab, G. Krishnanb, A. Sanjurjob, “Electrocatalytic reduction of NO on La A B B9O : x 12x x 12y y 32d evidence of electrically enhanced activity”, Solid State Ionics ,136–137, (2000) 775–782.
63. C.N. Costa, P.G. Savva, C. Andronikou, P.S. Lambrou, K. Polychronopoulou, V.C. Belessi, V.N. Stathopoulos, P.J. Pomonis, and A.M. Efstathiou, “An Investigation of the NO/H2/O2 (Lean De-NOx) Reaction on a Highly Active and Selective Pt/La0.7Sr0.2Ce0.1FeO3 Catalyst at Low Temperatures”, Journal of Catalysis, 209, (2002) 456–471.
64. S. Roy, M.S. Hegde, G. Madras, “Catalysis for NOx abatement”, Applied Energy, 86, (2009) 2283–2297.
65. H.J.Hwanga, J.W. Moonb, M. Awanoc, “Fabrication of novel type solid electrolyte membrane reactors for exhaust gas purification”, Journal of the European Ceramic Society, 24, (2004) 1325–1328.
66. F. Garin, “Environmental catalysis”, Catalysis Today, 89, (2004) 255–268.
67. J. H. Koh, B.S. Kang, H. C. Lim, Y.S. Yoo, “Thermodynamic Analysis of Carbon Deposition and Electrochemical Oxidation of Methane for SOFC Anodes “Electrochem. Solid-State Lett., 4, (2001) A12-A15.
68. M.B. Jensen, L.B. Raberg, “Mechanistic study of the dry reforming of propane to synthesis gas over a Ni/Mg(Al)O catalyst”, Catalysis Today, 145, (2009) 114-120.
69. N. Laosiripojana, “Catalytic steam reforming of ethane and propane over CeO2-doped Ni/Al2O3 at SOFC temperature: Improvement of resistance toward carbon formation by the redox property of doping CeO2”, Fuel, 85, (2006) 323-332.
70. N. Laosiripojana, S. Assabumrungrat, “Hydrogen production from steam and autothermal reforming of LPG over high surface area ceria”, Journal of Power Sources, 158, (2006) 1348–1357.
71. Kelfin M. Hardiman, “Performance of a Co-Ni catalyst for propane reforming under low steam-to-carbon ratios”, Chemical Engineering Journal, 102, (2004) 119–130.
72. D. Simwonis, F. Tietz & D. Stover, “Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells”. Solid State Ionics, 132, (2000) 241–251.
73. J. Malzbender, E. Wessel & R.W. Steinbrech, “Reduction and re-oxidation of anode for solid oxide fuel cells”. Solid State Ionics, 176, (2005) 2201-2203.
74. H. Itoh, T. Yamamoto, M. Mori, “Configurational and Electrical Behavior of Ni-YSZ Cermet with Novel Microstructure for Solid Oxide Fuel Cell Anodes”. J. Electrochem. Soc., 144, (1997) 641-645.
75. D. Sarantaridis1 & A. Atkinson, “Redox Cycling of Ni-Based Solid Oxide Fuel Cell Anodes: A Review”. Fuel Cells, 7 (2007) 246-258.
76. J. L. Young et al., in SOFC X, K. Eguchi, S.C. Singhal, H. Yokokawa & J. Mizusaki (Editors), “Understanding Nickel Oxidation and Reduction Processes in SOFC Systems” , The Electrochemical Society Proceedings Series, Pennington, NJ Vol.7, (2007) 1511-1519.
77. S.O. Moussaa & K. Morsi, “High-temperature oxidation of reactively processed nickel aluminide intermetallics”. J. All. & Comp., 426, (2006) 136–143.
78. 周建良, “以La0.58Sr0.4Co0.2Fe0.8O3-δ為固態氧化物燃料電池陰極材料之研究”, 清華大學化工所博士論文, 民國九十八年。79. C.G. Vayenas, S. Ladas, S. Bebelis, I.V. Yentekakis, S. Neophytidesa, Jiang Yi, Ch. Karavasilis C. Pliangos,” Electrochemical promotion in catalysis: non-faradaic electrochemical modification of catalytic activity“, Electrochimica Acta, 39 (1994) 1849-1855.