跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 14:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃婉真
研究生(外文):Huang, Wan-Chen
論文名稱:一、氧化亞銅立方體到菱形十二面體的製備及其光催化活性的探討 二、以溶劑熱法合成閃鋅礦和纖維鋅礦之硫化銅銦奈米晶體及其太陽能電池的應用
論文名稱(外文):I. Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity II. Solvothermal Synthesis of Zinc Blende and Wurtzite CuInS2 Nanocrystals for Photovoltaic Appli
指導教授:黃暄益
指導教授(外文):Huang, Hsua-Yi
口試委員:柯富祥段興宇
口試日期:2011-7-14
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:108
中文關鍵詞:氧化亞銅形狀演繹晶面催化太陽能電池
相關次數:
  • 被引用被引用:0
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一、氧化亞銅立方體到菱形十二面體的製備及其光催化活性的探討
本論文利用簡易的方法在酸性下合成具系統性表面形貌變化的氧化亞銅(Cu2O)奈米晶體。經由改變加入含有氯化銅(CuCl2)、氫氧化鈉(NaOH)、以及界面活性劑十二烷基硫酸鈉(Sodium dodecyl sulfate,SDS)水溶液中還原劑鹽酸羥胺(hydroxylamine hydrochloride,NH2OH•HCl)的量,即可合成出具有立方體(cubic)、面突出的立方體(faced-raised cubic)、截邊截角八面體(edge- and corner-truncated octahedral)、全截角菱行十二面體(all-corner-truncated rhombic dodecahedral)、{100}面截角菱行十二面體({100}-truncated rhombic dodecahedral)、以及菱形十二面體(rhombic dodecahedral)氧化亞銅的奈米晶體。結構鑑定中證實了菱形十二面體確實是由{110}面所組成。這是第一次合成出300奈米的氧化亞銅菱形十二面體結構。在紫外光可見光吸收光譜中,約在波長440奈米能觀察出微弱的氧化亞銅晶粒的特徵吸收,然而散射帶(scattering band)則是主導了整個圖譜。藉由廣泛的分析中間產物,氧化亞銅菱形十二面體的成長機制也被探討。氧化亞銅菱形十二面體在光降分解帶負電甲基橙(methyl orange)的過程中,比起氧化亞銅八面體及立方體有更好的催化能力。這些結果證實了氧化亞銅的{100}、{110}、以及{111}面在催化活性上有顯著不同的效果。

We report a facile method for the synthesis of cuprous oxide nanocrystals with systematic morphological evolution in an acidic condition. Cubic, faced-raised cubic, edge- and corner-truncated octahedral, all-corner-truncated rhombic dodecahedral, {100}-truncated rhombic dodecahedral, and rhombic dodecahedral Cu2O nanocrystals have been synthesized in an aqueous solution of CuCl2, sodium dodecyl sulfate (SDS) surfactant, and hydroxylamine (NH2OH•HCl) reductant by simply varying the volume of hydroxylamine added to the reaction mixture. Structural characterization confirmed that the rhombic dodecahedra are indeed bounded by {110} facets. This is the first time Cu2O rhombic dodecahedral nanocrystals with sizes of ~300 nm are synthesized. Optical characterization of these Cu2O nanocrystals showed band gap absorption at ~440 nm and strong light scattering bands extending from the visible to the near-infrared light region. Through an extensive examination of the intermediate structures formed, the growth mechanism of rhombic dodecahedra were investigated. In the photodegradation of negatively charged methyl orange, rhombic dodecahedra showed significantly better photocatalytic performance than cubic and octahedral crystals. The results clearly demonstrate the dramatic differences in the catalytic activities of the {100}, {110}, and {111} faces of Cu2O structures.

二、以溶劑熱法合成閃鋅礦和纖維鋅礦之硫化銅銦奈米晶體及其太陽能電池的應用
具有相當潛力的銅銦硫太陽能電池是由三個元素(I-III-VI2)所組成的半導體,可作為薄膜太陽能電池中的吸收層材料。目前銅銦硫太陽能電池已經被證實了具有20%的太陽能轉換效率。大部分所合成出銅銦硫的奈米晶體結構為黃銅礦(chalcopyrite),然而在2008年,Pan的研究團隊利用熱注射法第一次成功地合成出閃鋅礦(zinc blende)以及纖維鋅礦(wurtzite)的銅銦硫奈米晶體。
本論文則是在溫度160℃下,以氯化銅(CuCl2)、氯化銦(InCl3)、硫代硫醯胺(thioacetamide,C2H5NS)、十八油胺(oleylamine,C18H37N)、以及乙二胺(ethylenediamine,C2H8N2)為反應物。僅藉由調控十八油胺以及乙二胺加入的比例則可以合成出閃鋅礦(zinc blende)以及纖維鋅礦(wurtzite)的銅銦硫奈米晶體。粉末X光繞射儀和穿透式電子顯微鏡的鑑定可以很明確地觀測到銅銦硫奈米結構的相轉換。在紫外光可見光吸收光譜中,可以發現所合成的銅銦硫產物皆於可見光到近紅外光區擁有強烈的全區吸收。在此我們也利用此特性將銅銦硫奈米粒子製成太陽能電池的吸收薄膜層,證實了合成出的銅銦硫奈米晶體確實能應用於太陽能電池。

A promising thin film photovoltaic technology is CIS-based solar cells, which are based on the use of ternary I-III-VI2 semiconductors as photovoltaic absorber material. CIS solar cells have already demonstrated nearly 20% solar energy conversion efficiency. CuInS2 nanostructures with mostly a chalcopyrite crystal structure have been prepared. In 2008, by using a hot-injection method, Pan et al. prepared zinc blende and wurtzite CuInS2 nanocrystals for the first time. Here, we have synthesized CuInS2 nanocrystals by a simple one-step solvothermal method at 160 ºC for 12 h. Copper chloride (CuCl2), indium chloride (InCl3), thioacetamide (TAA), ethylenediamine and oleylamine were used as the reagents. By adjusting the volume of oleylamine and ethylenediamine used while keeping the other experimental conditions constant, the phase transition of CuInS2 nanostructures from zinc blende (cubic) to wurtzite (hexagonal) structure can be achieved. The crystal phases were confirmed by powder X-ray diffraction and selected-area electron diffraction techniques. The CuInS2 products show strong light absorption from the entire visible to the near-IR region. This characteristic suggests their possible integration into solar cells with enhanced solar energy conversion efficiency.
CHAPER 1
Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Rhombic Dodecahedral Structures
and Their Comparative Photocatalytic Activity

1.1 Introduction 1
1.1.1 Synthesis of Rhombic Dodecahedral Cuprous Oxide Structures 3
1.1.2 Morphological Evolution of Cuprous Oxide Crystals 12
1.1.3 Facet-dependent properties of Cu2O crystals 18
1.1.4 Motivation of the Present Thesis Research 25
1.2 Experimental Section 26
1.2.1 Chemicals 26
1.2.2 Synthetic Procedure 26
1.2.2 Photocatalysis 27
1.1.4 Instrumentation 29
1.3 Results and Discussion 30
1.4 Conclusion 58
1.5 References 59

CHAPER 2
Solvothermal Synthesis of Zinc Blende and Wurtzite CuInS2 Nanocrystals and Their Photovoltaic Performance

2.1 Introduction 62
2.1.1 Methods of Preparation of CuInS2 64
2.1.2 Photovoltaic Performance of CuInS2 Nanocrystals 75
2.2 Experimental Section 81
2.2.1 Chemicals 81
2.2.2 Synthetic Procedure 81
2.2.3 Thin Film Deposition and Device Fabrication 83
2.2.3 Instrumentation 84
2.3 Results and Discussion 85
2.4 Conclusion 106
2.5 References 107

CHAPER 1
Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Rhombic Dodecahedral Structures
and Their Comparative Photocatalytic Activity

(1) Ng, C. H. B.; Fan, W. Y. J. Phys. Chem. B 2006, 110, 20801.
(2) Zhang, H.; Zhu, Q.; Zhang, Y.; Wang, Y.; Zhao, L.; Yu, B. Adv. Funct. Mater. 2007, 17, 2766.
(3) Xu, H.; Wang, W.; Zhu, W. J. Phys. Chem. B 2006, 110, 13829.
(4) White, B.; Yin, M.; Hall, A.; Le, D.; Stolbov, S.; Rahman, T.; Turro, N.; O’Brien, S. Nano Lett. 2006, 6, 2095.
(5) Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; Shinohara, K.; Tanaka, A.; Kondo, J. N.; Domen, K. Chem. Commun. 1998, 357.
(6) Tang, B.-X.; Wang, F.; Li, J.-H.; Xie, Y.-X.; Zhang, M.-B. J. Org. Chem. 2007, 72, 6294.
(7) Altman, R. A.; Koval, E. D.; Buchwald, S. L. J. Org. Chem. 2007, 72, 6190.
(8) Li, J.-H.; Tang, B.-X.; Tao, L.-M.; Xie, Y.-X.; Liang, Y.; Zhang, M.-B. J. Org. Chem. 2006, 71, 7488.
(9) McShane, C. M.; Siripala, W. P.; Choi, K.-S. J. Phys. Chem. Lett. 2010, 1, 2666.
(10) Gou, L.; Murphy, C. J. Nano Lett. 2003, 3, 231.
(11) Kuo, C.-H.; Chen, C.-H.; Huang, M. H. Adv. Funct. Mater. 2007, 17, 3773.
(12) Kuo, C.-H.; Huang, M. H. J. Phys. Chem. C 2008, 112, 18355.
(13) Siegfried, M. J.; Choi, K.-S. J. Am. Chem. Soc. 2006, 128, 10356.
(14) Siegfried, M. J.; Choi, K.-S. Adv. Mater. 2004, 16, 1743.
(15) Liang, X.; Gao, L.; Yang, S.; Sun, J. Adv. Mater. 2009, 21, 2068.
(16) Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C. J. Am. Chem. Soc. 2010, 132, 6131.
(17) Kuo, C.-H.; Huang, M. H. J. Am. Chem. Soc. 2008, 130, 12815.
(18) Zhang, Y.; Deng, B.; Zhang, Gao, D.; Xu, A.-W. J. Phys. Chem. C 2010, 114, 5073.
(19) Singh, D. P.; Neti, N. R.; Sinha, A. S. K.; Srivastava, O. N. J. Phys. Chem. C 2007, 111, 1638.
(20) Tan, Y. W.; Xue, X. Y.; Peng, Q.; Zhao, H.; Wang, T. H.; Li, Y. D. Nano Lett. 2007, 7, 3723.
(21) Sui, Y. M.; Fu, W. Y.; Zeng, Y.; Yang, H. B.; Zhang, Y. Y.; Chen, H.; Li, Y. X.; Li, M. H.; Zou, G. T. Angew. Chem., Int. Ed. 2010, 49, 4282.
(22) Lu, C. H.; Qi, L. M.; Yang, J. H.; Wang, X. Y.; Zhang, D. Y.; Xie, J. L.; Ma, J. M. Adv. Mater. 2005, 17, 2562.
(23) Chang, Y.; Teo, J. J.; Zeng, H. C. Langmuir 2005, 21, 1074.
(24) Teo, J. J.; Chang, Y.; Zeng, H. C. Langmuir 2006, 22, 7369.
(25) McShane, C. M.; Choi, K. S. J. Am. Chem. Soc. 2009, 131, 2561.
(26) Yu, H.; Yu, J.; Liu, S.; Mann, S. Chem. Mater. 2007, 19, 4327.
(27) Kuo, C.-H.; Huang, M. H. Nano Today 2010, 5, 106.
(28) Wang, D.; Mo, M.; Yu, D.; Xu, L.; Li, F.; Qian, Y. Cryst. Growth Des. 2003, 3, 717.
(29) Ho, J. Y.; Huang, M. H. J. Phys. Chem. C. 2009, 113, 14159.
(30) Kuo, C.-H.; Yang, Y.-C.; Gwo, S. G.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 1052.
(31) Zhang, Y.; Deng, B.; Zhang, T.; Gao, D.; Xu, A.-W. J. Phys. Chem. C. 2010, 114, 5073.

CHAPER 2
Solvothermal Synthesis of Zinc Blende and Wurtzite CuInS2 Nanocrystals and Their Photovoltaic Performance

(1) Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R. Prog. Photovolt: Res. Appl. 2008, 16, 235.
(2) Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F; Korgel, B. A. J. Am. Chem. Soc. 2008, 130, 16770.
(3) Guo, Q.; Ford, G. M.; Hillhouse, H. W.; Agrawal, R. Nano Lett. 2009, 9, 3060.
(4) Liu, W.; Mitzi, D. B.; Yuan, M.; Kellock, A. J.; Chey, S. J.; Gunawan, O. Chem. Mater. 2010, 22, 1010.
(5) Kwak, W.-C.; Han, S.-H.; Kim, T. G.; Sung, Y.-M. Cryst. Growth Des. 2010, 10, 5297.
(6) Li, L.; Coates, N.; Moses, D. J. Am. Chem. Soc. 2010, 132, 22.
(7) Weil, B. D.; Connor, S. T.; Cui, Y. J. Am. Chem. Soc. 2010, 132, 6642.
(8) Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K.K.; Hepp, A. F. Chem. Mater. 2003, 15, 3142.
(9) Mitchell, K.; Fahrenbruch, A. L.; Bube, R. H. J. Appl. Phys. 1977, 48, 829.
(10) Meese, J. M.; Manthuruthil, J. C.; Locker, D. R. Bull. Am. Phys. Soc. 1975, 20, 696.
(11) Braunger, D.; Hariskos, D.; Walter, T.; Schock, H. W. Sol. Energy Mater. Sol. Cells 1996, 40, 97.
(12) Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Hepp, A. F. J. Phys. Chem. B 2004, 108, 12429.
(13) Nairn, J. J.; Shapiro, P. J.; Twamley, B.; Pounds, T.; vonWandruszka, R.; Fletcher, T. R.; Williams, M.; Wang, C.; Norton, M. G. Nano Lett. 2006, 6, 1218.
(14) Batabyal, S. K.; Tian, L.; Venkatram, N.; Ji, W.; Vittal, J. J. J. Phys. Chem. C. 2009, 113, 15037.
(15) Xiao, J. P.; Xie, Y.; Tang, R.; Qian, Y. T. J. Solid State Chem. 2001, 161, 179.
(16) Xiao, J. P.; Xie, Y.; Xiong, Y. J.; Tang, R.; Qian, Y. T. J. Mater. Chem. 2001, 11, 1417.
(17) Peng, S.; Liang, J.; Zhang, L.; Shi, Y.; Chen, J. J. Cryst. Growth 2007, 305, 99.
(18) Qi, Y.; Liu, Q.; Tang, K.; Liang, Z.; Ren, Z.; Liu, X. J. Phys. Chem. C. 2009, 113, 3939.
(19) Choi, S. H.; Kim, E. G.; Hyeon, T. J. Am. Chem. Soc., 2006, 128, 2520.
(20) Connor, S. T.; Hsu, C.-M.; Weil, B. D.; Aloni, S.; Cui, Y. J. Am. Chem. Soc. 2009, 131, 4962.
(21) Pan, D. C.; An, L. J.; Sun, Z. M.; Hou, W.; Yang, Y.; Yang, Z. Z.; Lu, Y. F. J. Am. Chem. Soc. 2008, 130, 5620.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊