|
1. Fox, T., de Miguel, E., Mort, J.S. & Storer, A.C. Potent slow-binding inhibition of cathepsin B by its propeptide. Biochemistry 31, 12571-6 (1992). 2. Taylor, M.A. et al. Recombinant pro-regions from papain and papaya proteinase IV-are selective high affinity inhibitors of the mature papaya enzymes. Protein Eng 8, 59-62 (1995). 3. Carmona, E. et al. Potency and selectivity of the cathepsin L propeptide as an inhibitor of cysteine proteases. Biochemistry 35, 8149-57 (1996). 4. Maubach, G. et al. The inhibition of cathepsin S by its propeptide--specificity and mechanism of action. Eur J Biochem 250, 745-50 (1997). 5. Lalmanach, G. et al. Inhibition of trypanosomal cysteine proteinases by their propeptides. J Biol Chem 273, 25112-6 (1998). 6. Billington, C.J., Mason, P., Magny, M.C. & Mort, J.S. The slow-binding inhibition of cathepsin K by its propeptide. Biochem Biophys Res Commun 276, 924-9 (2000). 7. Guay, J., Falgueyret, J.P., Ducret, A., Percival, M.D. & Mancini, J.A. Potency and selectivity of inhibition of cathepsin K, L and S by their respective propeptides. Eur J Biochem 267, 6311-8 (2000). 8. Jerala, R., Zerovnik, E., Kidric, J. & Turk, V. pH-induced conformational transitions of the propeptide of human cathepsin L. A role for a molten globule state in zymogen activation. J Biol Chem 273, 11498-504 (1998). 9. Denizot, F. et al. Novel structures CTLA-2 alpha and CTLA-2 beta expressed in mouse activated T cells and mast cells and homologous to cysteine proteinase proregions. Eur J Immunol 19, 631-5 (1989). 10. Delaria, K. et al. Inhibition of cathepsin L-like cysteine proteases by cytotoxic T-lymphocyte antigen-2 beta. J Biol Chem 269, 25172-7 (1994). 11. Kurata, M. et al. Expression, purification, and inhibitory activities of mouse cytotoxic T-lymphocyte antigen-2alpha. Protein Expr Purif 32, 119-25 (2003). 12. Karrer, K.M., Peiffer, S.L. & DiTomas, M.E. Two distinct gene subfamilies within the family of cysteine protease genes. Proc Natl Acad Sci U S A 90, 3063-7 (1993). 13. Barrett, A.J. Classification of peptidases. Methods Enzymol 244, 1-15 (1994). 14. Rawlings, N.D. & Barrett, A.J. Families of cysteine peptidases. Methods Enzymol 244, 461-86 (1994). 15. Rawlings, N.D. & Barrett, A.J. Evolutionary families of peptidases. Biochem J 290 ( Pt 1), 205-18 (1993). 16. Barrett, A.J. & Kirschke, H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol 80 Pt C, 535-61 (1981). 17. Bond, J.S. & Butler, P.E. Intracellular proteases. Annu Rev Biochem 56, 333-64 (1987). 18. Fan, T.J., Han, L.H., Cong, R.S. & Liang, J. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai) 37, 719-27 (2005). 19. Yamashima, T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog Neurobiol 62, 273-95 (2000). 20. Berti, P.J. & Storer, A.C. Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol 246, 273-83 (1995). 21. Yamamoto, Y., Kurata, M., Watabe, S., Murakami, R. & Takahashi, S.Y. Novel cysteine proteinase inhibitors homologous to the proregions of cysteine proteinases. Curr Protein Pept Sci 3, 231-8 (2002). 22. Chapman, H.A., Riese, R.J. & Shi, G.P. Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 59, 63-88 (1997). 23. Grzelakowska-Sztabert, B. [Molecular mechanisms of apoptosis induced by activation of membrane receptors from the TNF-R superfamily]. Postepy Biochem 44, 8-21 (1998). 24. McGrath, M.E. The lysosomal cysteine proteases. Annu Rev Biophys Biomol Struct 28, 181-204 (1999). 25. Turk, B., Turk, D. & Turk, V. Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 1477, 98-111 (2000). 26. Lennon-Dumenil, A.M., Bakker, A.H., Wolf-Bryant, P., Ploegh, H.L. & Lagaudriere-Gesbert, C. A closer look at proteolysis and MHC-class-II-restricted antigen presentation. Curr Opin Immunol 14, 15-21 (2002). 27. Vaes, G., Delaisse, J.M. & Eeckhout, Y. Relative roles of collagenase and lysosomal cysteine-proteinases in bone resorption. Matrix Suppl 1, 383-8 (1992). 28. Rzychon, M., Chmiel, D. & Stec-Niemczyk, J. Modes of inhibition of cysteine proteases. Acta Biochim Pol 51, 861-73 (2004). 29. Tao, K., Stearns, N.A., Dong, J., Wu, Q.L. & Sahagian, G.G. The proregion of cathepsin L is required for proper folding, stability, and ER exit. Arch Biochem Biophys 311, 19-27 (1994). 30. Hanewinkel, H., Glossl, J. & Kresse, H. Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts. J Biol Chem 262, 12351-5 (1987). 31. Cuozzo, J.W., Tao, K., Wu, Q.L., Young, W. & Sahagian, G.G. Lysine-based structure in the proregion of procathepsin L is the recognition site for mannose phosphorylation. J Biol Chem 270, 15611-9 (1995). 32. Groves, M.R., Coulombe, R., Jenkins, J. & Cygler, M. Structural basis for specificity of papain-like cysteine protease proregions toward their cognate enzymes. Proteins 32, 504-14 (1998). 33. Nishimura, Y., Kawabata, T. & Kato, K. Identification of latent procathepsins B and L in microsomal lumen: characterization of enzymatic activation and proteolytic processing in vitro. Arch Biochem Biophys 261, 64-71 (1988). 34. Rowan, A.D., Mason, P., Mach, L. & Mort, J.S. Rat procathepsin B. Proteolytic processing to the mature form in vitro. J Biol Chem 267, 15993-9 (1992). 35. Khan, A.R. & James, M.N. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci 7, 815-36 (1998). 36. Podobnik, M., Kuhelj, R., Turk, V. & Turk, D. Crystal structure of the wild-type human procathepsin B at 2.5 A resolution reveals the native active site of a papain-like cysteine protease zymogen. J Mol Biol 271, 774-88 (1997). 37. Cygler, M. et al. Structure of rat procathepsin B: model for inhibition of cysteine protease activity by the proregion. Structure 4, 405-16 (1996). 38. Turk, D., Podobnik, M., Kuhelj, R., Dolinar, M. & Turk, V. Crystal structures of human procathepsin B at 3.2 and 3.3 Angstroms resolution reveal an interaction motif between a papain-like cysteine protease and its propeptide. FEBS Lett 384, 211-4 (1996). 39. Coulombe, R. et al. Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J 15, 5492-503 (1996). 40. Okano, H., Hirano, T. & Balaban, E. Learning and memory. Proc Natl Acad Sci U S A 97, 12403-4 (2000). 41. Tyler, V.E., Jr. & Malone, M.H. An investigation of the culture, constituents, and physiological activity of Panaeolus campanulatus. J Am Pharm Assoc Am Pharm Assoc 49, 23-7 (1960). 42. Quinn, W.G. & Greenspan, R.J. Learning and courtship in Drosophila: two stories with mutants. Annu Rev Neurosci 7, 67-93 (1984). 43. Davis, R.L. Physiology and biochemistry of Drosophila learning mutants. Physiol Rev 76, 299-317 (1996). 44. Waddell, S. & Quinn, W.G. Flies, genes, and learning. Annu Rev Neurosci 24, 1283-309 (2001). 45. Comas, D., Petit, F. & Preat, T. Drosophila long-term memory formation involves regulation of cathepsin activity. Nature 430, 460-3 (2004). 46. DeZazzo, J. & Tully, T. Dissection of memory formation: from behavioral pharmacology to molecular genetics. Trends Neurosci 18, 212-8 (1995). 47. Dubnau, J. & Tully, T. Gene discovery in Drosophila: new insights for learning and memory. Annu Rev Neurosci 21, 407-44 (1998). 48. Yin, J.C., Del Vecchio, M., Zhou, H. & Tully, T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107-15 (1995). 49. Tully, T. Discovery of genes involved with learning and memory: an experimental synthesis of Hirschian and Benzerian perspectives. Proc Natl Acad Sci U S A 93, 13460-7 (1996). 50. Davis, R.L. Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 28, 275-302 (2005). 51. Keene, A.C. & Waddell, S. Drosophila olfactory memory: single genes to complex neural circuits. Nat Rev Neurosci 8, 341-54 (2007). 52. Krashes, M.J. & Waddell, S. Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila. J Neurosci 28, 3103-13 (2008). 53. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727-36 (2003). 54. Deshapriya, R.M. et al. Drosophila CTLA-2-like protein (D/CTLA-2) inhibits cysteine proteinase 1 (CP1), a cathepsin L-like enzyme. Zoolog Sci 24, 21-30 (2007). 55. Begg, G.E. & Speicher, D.W. Mass spectrometry detection and reduction of disulfide adducts between reducing agents and recombinant proteins with highly reactive cysteines. J Biomol Tech 10, 17-20 (1999). 56. Schagger, H. Tricine-SDS-PAGE. Nat Protoc 1, 16-22 (2006). 57. Smith, P.K. et al. Measurement of protein using bicinchoninic acid. Anal Biochem 150, 76-85 (1985). 58. D'Alessio K, J., McQueney, M.S., Brun, K.A., Orsini, M.J. & Debouck, C.M. Expression in Escherichia coli, refolding, and purification of human procathepsin K, an osteoclast-specific protease. Protein Expr Purif 15, 213-20 (1999). 59. Tobbell, D.A. et al. Identification of in vitro folding conditions for procathepsin S and cathepsin S using fractional factorial screens. Protein Expr Purif 24, 242-54 (2002). 60. Pauly, T.A. et al. Specificity determinants of human cathepsin s revealed by crystal structures of complexes. Biochemistry 42, 3203-13 (2003). 61. Barrett, A.J. Fluorimetric assays for cathepsin B and cathepsin H with methylcoumarylamide substrates. Biochem J 187, 909-12 (1980). 62. Barrett, A.J. et al. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J 201, 189-98 (1982). 63. Chen, R., Li, L. & Weng, Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins 52, 80-7 (2003). 64. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33, W363-7 (2005). 65. Sengupta, A., Mahalakshmi, R., Shamala, N. & Balaram, P. Aromatic interactions in tryptophan-containing peptides: crystal structures of model tryptophan peptides and phenylalanine analogs. J Pept Res 65, 113-29 (2005). 66. Deshapriya, R.M., Yuhashi, S., Usui, M., Kageyama, T. & Yamamoto, Y. Identification of essential residues of CTLA-2alpha for inhibitory potency. J Biochem 147, 393-404 (2010).
|