跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 14:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:石敏芳
研究生(外文):Shih, Min-Fang
論文名稱:Site-Directed Mutagenesis Studies of Crammer for Structure, Stability and Inhibitory Potency
論文名稱(外文):利用定點突變方法研究Crammer之結構,蛋白質特性及其酵素抑制性
指導教授:呂平江彭明德彭明德引用關係
指導教授(外文):Lyu, Ping-ChiangPerng, Ming-Der
口試委員:陳新
口試日期:2011-06-16
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:62
中文關鍵詞:crammerhydrophobic core
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
Drosophila melanogaster crammer is a small protein with 79 amino acids. The primary sequence of crammer is similar to that of the propeptide of cathepsin, therefore, crammer has been considered as a novel propeptide-like inhibitor. Recently, crammer has been reported to involve in the formation of long term memory by regulating the activity of cathepsin, but its regulatory mechanism is still unclear. In this study, site directed mutagenesis was applied to explore the hot spot residues of crammer in inhibitory potency against cathepsin. Meanwhile, biochemical and biophysical methods were used to clarify structural and functional relationships. Our inhibitory assay reveals that the conserved aromatic residues with other organisms in crammer play an important role in inhibitory potency. Alanine substitutions at these positions lose more than 20% inhibitory ability. Moreover, most of mutants have no obvious influences in protein structure, except for W9A, Y12A and Y20A. Trp9 in crammer made close contacts with Y12, F16 and Y20 by pi-pi stacking and alanine replacement disrupts this interaction, thus resulting in the structural unfolded. On the other hand, the functional loss of W53 is resulted from disrupting the interaction between cathepin B and crammer. Taken together, this study identified the hot spot residues of crammer in cathepsin inhibition, which will expand the potential of pharmaceutical theapry Alzheimer’s disease.
Abstract 1
中文摘要 2
Abbreviations 3
Chapter 1. Introduction 4
1.1 Cysteine protease inhibitor 4
1.2 Cysteine protease 5
1.3 Learning and memory 6
1.4 The theme of this thesis 7
Chapter 2. Materials and Methods 9
2.1 Construction of recombinant crammer mutant 9
2.2 Protein expression and purification 9
2.3 MALDI-TOF MASS analysis 10
2.4 Tricine SDS PAGE 11
2.5 Quantification of protein concentration 12
2.7 Expression of fly procathepsin B 13
2.8 Isolation and solubilization of procathepsin B inclusion bodies 13
2.9 In vitro folding and autoprocessing of proCTSB 14
2.10 Enzymatic assay of cathepsin B 14
2.11 Quantification of cathepsin B concentration by E-64 15
2.12 Inhibitory assay of cathepsin B or CTSX with mutant proteins 16
2.13 Circular Dichroism Spectroscopy 17
2.14 Fluorescence measurements 18
2.15 NMR spectroscopy 18
2.16 Molecular modeling and docking 19
Chapter 3. Results and Discussion 20
3.1 Determination of structurally and functionally important residues 20
3.2 Protein expression and purification 21
3.3 Inhibitory assay of mutant proteins against cathepsin B from Drosophila melanogaster 22
3.4 Comparison of circular dichroism spectra between wild type and mutant proteins 24
3.5 Intrinsic fluorescence assay 25
3.6 Investigate the protein folding through 1H-15N HSQC spectra 28
Chapter 4. Conclusions 30
Figures 31
Figure 1 Multiple sequence alignments 31
Figure 2 Three dimensional structure of procathepsin L 32
Figure 3 Experimental strategy 33
Figure 4 Construction of the expression plasmid, pAED4 34
Figure 5 Standard curve for quantifying protein concentration 35
36
Figure 6 Possible functional important residues in crammer. 36
Figure 7 Amino acid residues in the crammer protein which may be important for protein structure and function. 37
Figure 8 Expression profiles of mutant proteins. 38
Figure 9 HPLC profile for purification of mutant proteins. 39
Figure 10 Mass spectra for identifying the molecular weight of mutant proteins. 40
Figure 11 The inhibitory activity comparison of mutant proteins analyzed by different strategies. 41
Figure 12 The inhibitory activity of wild type crammer toward cathepsin B. 42
Figure 13 The dose dependent inhibitory assay of wild type crammer and mutant proteins. 43
Figure 14 The comparison of inhibitory potency between single mutants and double mutants. 44
Figure 15 Circular dichroism spectra of C72S and double mutant proteins. 45
Figure 16 Thermostability comparisons upon different pH. 46
Figure 17 Hydrophobic cores in crammer. 47
Figure 18 The aromatic residues in core 1 affect protein packing. 48
Figure 19 The impact on protein packing by aromatic residues in core 2. 49
Figure 20 1H 15N HSQC spectra 50
Figure 21 The interactions between W9 and the surrounding amino acids. 51
Figure 22 Protein-protein docking model between crammer and cathepsin B. 52
Tables 53
Table 1 Sequence of oligonucleotide used for site directed mutagenesis in this study. 53
Table 2 The constructs of mutant proteins in this study. 54
Table 3 The theoretical molecular weight and observed molecular weight of mutant proteins. 55
Appendix 56
Appendix I. Catalytic mechanism of cysteine protease 57
Reference 58

1. Fox, T., de Miguel, E., Mort, J.S. & Storer, A.C. Potent slow-binding inhibition of cathepsin B by its propeptide. Biochemistry 31, 12571-6 (1992).
2. Taylor, M.A. et al. Recombinant pro-regions from papain and papaya proteinase IV-are selective high affinity inhibitors of the mature papaya enzymes. Protein Eng 8, 59-62 (1995).
3. Carmona, E. et al. Potency and selectivity of the cathepsin L propeptide as an inhibitor of cysteine proteases. Biochemistry 35, 8149-57 (1996).
4. Maubach, G. et al. The inhibition of cathepsin S by its propeptide--specificity and mechanism of action. Eur J Biochem 250, 745-50 (1997).
5. Lalmanach, G. et al. Inhibition of trypanosomal cysteine proteinases by their propeptides. J Biol Chem 273, 25112-6 (1998).
6. Billington, C.J., Mason, P., Magny, M.C. & Mort, J.S. The slow-binding inhibition of cathepsin K by its propeptide. Biochem Biophys Res Commun 276, 924-9 (2000).
7. Guay, J., Falgueyret, J.P., Ducret, A., Percival, M.D. & Mancini, J.A. Potency and selectivity of inhibition of cathepsin K, L and S by their respective propeptides. Eur J Biochem 267, 6311-8 (2000).
8. Jerala, R., Zerovnik, E., Kidric, J. & Turk, V. pH-induced conformational transitions of the propeptide of human cathepsin L. A role for a molten globule state in zymogen activation. J Biol Chem 273, 11498-504 (1998).
9. Denizot, F. et al. Novel structures CTLA-2 alpha and CTLA-2 beta expressed in mouse activated T cells and mast cells and homologous to cysteine proteinase proregions. Eur J Immunol 19, 631-5 (1989).
10. Delaria, K. et al. Inhibition of cathepsin L-like cysteine proteases by cytotoxic T-lymphocyte antigen-2 beta. J Biol Chem 269, 25172-7 (1994).
11. Kurata, M. et al. Expression, purification, and inhibitory activities of mouse cytotoxic T-lymphocyte antigen-2alpha. Protein Expr Purif 32, 119-25 (2003).
12. Karrer, K.M., Peiffer, S.L. & DiTomas, M.E. Two distinct gene subfamilies within the family of cysteine protease genes. Proc Natl Acad Sci U S A 90, 3063-7 (1993).
13. Barrett, A.J. Classification of peptidases. Methods Enzymol 244, 1-15 (1994).
14. Rawlings, N.D. & Barrett, A.J. Families of cysteine peptidases. Methods Enzymol 244, 461-86 (1994).
15. Rawlings, N.D. & Barrett, A.J. Evolutionary families of peptidases. Biochem J 290 ( Pt 1), 205-18 (1993).
16. Barrett, A.J. & Kirschke, H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol 80 Pt C, 535-61 (1981).
17. Bond, J.S. & Butler, P.E. Intracellular proteases. Annu Rev Biochem 56, 333-64 (1987).
18. Fan, T.J., Han, L.H., Cong, R.S. & Liang, J. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai) 37, 719-27 (2005).
19. Yamashima, T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog Neurobiol 62, 273-95 (2000).
20. Berti, P.J. & Storer, A.C. Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol 246, 273-83 (1995).
21. Yamamoto, Y., Kurata, M., Watabe, S., Murakami, R. & Takahashi, S.Y. Novel cysteine proteinase inhibitors homologous to the proregions of cysteine proteinases. Curr Protein Pept Sci 3, 231-8 (2002).
22. Chapman, H.A., Riese, R.J. & Shi, G.P. Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 59, 63-88 (1997).
23. Grzelakowska-Sztabert, B. [Molecular mechanisms of apoptosis induced by activation of membrane receptors from the TNF-R superfamily]. Postepy Biochem 44, 8-21 (1998).
24. McGrath, M.E. The lysosomal cysteine proteases. Annu Rev Biophys Biomol Struct 28, 181-204 (1999).
25. Turk, B., Turk, D. & Turk, V. Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 1477, 98-111 (2000).
26. Lennon-Dumenil, A.M., Bakker, A.H., Wolf-Bryant, P., Ploegh, H.L. & Lagaudriere-Gesbert, C. A closer look at proteolysis and MHC-class-II-restricted antigen presentation. Curr Opin Immunol 14, 15-21 (2002).
27. Vaes, G., Delaisse, J.M. & Eeckhout, Y. Relative roles of collagenase and lysosomal cysteine-proteinases in bone resorption. Matrix Suppl 1, 383-8 (1992).
28. Rzychon, M., Chmiel, D. & Stec-Niemczyk, J. Modes of inhibition of cysteine proteases. Acta Biochim Pol 51, 861-73 (2004).
29. Tao, K., Stearns, N.A., Dong, J., Wu, Q.L. & Sahagian, G.G. The proregion of cathepsin L is required for proper folding, stability, and ER exit. Arch Biochem Biophys 311, 19-27 (1994).
30. Hanewinkel, H., Glossl, J. & Kresse, H. Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts. J Biol Chem 262, 12351-5 (1987).
31. Cuozzo, J.W., Tao, K., Wu, Q.L., Young, W. & Sahagian, G.G. Lysine-based structure in the proregion of procathepsin L is the recognition site for mannose phosphorylation. J Biol Chem 270, 15611-9 (1995).
32. Groves, M.R., Coulombe, R., Jenkins, J. & Cygler, M. Structural basis for specificity of papain-like cysteine protease proregions toward their cognate enzymes. Proteins 32, 504-14 (1998).
33. Nishimura, Y., Kawabata, T. & Kato, K. Identification of latent procathepsins B and L in microsomal lumen: characterization of enzymatic activation and proteolytic processing in vitro. Arch Biochem Biophys 261, 64-71 (1988).
34. Rowan, A.D., Mason, P., Mach, L. & Mort, J.S. Rat procathepsin B. Proteolytic processing to the mature form in vitro. J Biol Chem 267, 15993-9 (1992).
35. Khan, A.R. & James, M.N. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci 7, 815-36 (1998).
36. Podobnik, M., Kuhelj, R., Turk, V. & Turk, D. Crystal structure of the wild-type human procathepsin B at 2.5 A resolution reveals the native active site of a papain-like cysteine protease zymogen. J Mol Biol 271, 774-88 (1997).
37. Cygler, M. et al. Structure of rat procathepsin B: model for inhibition of cysteine protease activity by the proregion. Structure 4, 405-16 (1996).
38. Turk, D., Podobnik, M., Kuhelj, R., Dolinar, M. & Turk, V. Crystal structures of human procathepsin B at 3.2 and 3.3 Angstroms resolution reveal an interaction motif between a papain-like cysteine protease and its propeptide. FEBS Lett 384, 211-4 (1996).
39. Coulombe, R. et al. Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J 15, 5492-503 (1996).
40. Okano, H., Hirano, T. & Balaban, E. Learning and memory. Proc Natl Acad Sci U S A 97, 12403-4 (2000).
41. Tyler, V.E., Jr. & Malone, M.H. An investigation of the culture, constituents, and physiological activity of Panaeolus campanulatus. J Am Pharm Assoc Am Pharm Assoc 49, 23-7 (1960).
42. Quinn, W.G. & Greenspan, R.J. Learning and courtship in Drosophila: two stories with mutants. Annu Rev Neurosci 7, 67-93 (1984).
43. Davis, R.L. Physiology and biochemistry of Drosophila learning mutants. Physiol Rev 76, 299-317 (1996).
44. Waddell, S. & Quinn, W.G. Flies, genes, and learning. Annu Rev Neurosci 24, 1283-309 (2001).
45. Comas, D., Petit, F. & Preat, T. Drosophila long-term memory formation involves regulation of cathepsin activity. Nature 430, 460-3 (2004).
46. DeZazzo, J. & Tully, T. Dissection of memory formation: from behavioral pharmacology to molecular genetics. Trends Neurosci 18, 212-8 (1995).
47. Dubnau, J. & Tully, T. Gene discovery in Drosophila: new insights for learning and memory. Annu Rev Neurosci 21, 407-44 (1998).
48. Yin, J.C., Del Vecchio, M., Zhou, H. & Tully, T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107-15 (1995).
49. Tully, T. Discovery of genes involved with learning and memory: an experimental synthesis of Hirschian and Benzerian perspectives. Proc Natl Acad Sci U S A 93, 13460-7 (1996).
50. Davis, R.L. Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 28, 275-302 (2005).
51. Keene, A.C. & Waddell, S. Drosophila olfactory memory: single genes to complex neural circuits. Nat Rev Neurosci 8, 341-54 (2007).
52. Krashes, M.J. & Waddell, S. Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila. J Neurosci 28, 3103-13 (2008).
53. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727-36 (2003).
54. Deshapriya, R.M. et al. Drosophila CTLA-2-like protein (D/CTLA-2) inhibits cysteine proteinase 1 (CP1), a cathepsin L-like enzyme. Zoolog Sci 24, 21-30 (2007).
55. Begg, G.E. & Speicher, D.W. Mass spectrometry detection and reduction of disulfide adducts between reducing agents and recombinant proteins with highly reactive cysteines. J Biomol Tech 10, 17-20 (1999).
56. Schagger, H. Tricine-SDS-PAGE. Nat Protoc 1, 16-22 (2006).
57. Smith, P.K. et al. Measurement of protein using bicinchoninic acid. Anal Biochem 150, 76-85 (1985).
58. D'Alessio K, J., McQueney, M.S., Brun, K.A., Orsini, M.J. & Debouck, C.M. Expression in Escherichia coli, refolding, and purification of human procathepsin K, an osteoclast-specific protease. Protein Expr Purif 15, 213-20 (1999).
59. Tobbell, D.A. et al. Identification of in vitro folding conditions for procathepsin S and cathepsin S using fractional factorial screens. Protein Expr Purif 24, 242-54 (2002).
60. Pauly, T.A. et al. Specificity determinants of human cathepsin s revealed by crystal structures of complexes. Biochemistry 42, 3203-13 (2003).
61. Barrett, A.J. Fluorimetric assays for cathepsin B and cathepsin H with methylcoumarylamide substrates. Biochem J 187, 909-12 (1980).
62. Barrett, A.J. et al. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J 201, 189-98 (1982).
63. Chen, R., Li, L. & Weng, Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins 52, 80-7 (2003).
64. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33, W363-7 (2005).
65. Sengupta, A., Mahalakshmi, R., Shamala, N. & Balaram, P. Aromatic interactions in tryptophan-containing peptides: crystal structures of model tryptophan peptides and phenylalanine analogs. J Pept Res 65, 113-29 (2005).
66. Deshapriya, R.M., Yuhashi, S., Usui, M., Kageyama, T. & Yamamoto, Y. Identification of essential residues of CTLA-2alpha for inhibitory potency. J Biochem 147, 393-404 (2010).



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. Structural and functional characterization of the regulator RcsB for capsule synthesis in Klebsiella pneumoniae
2. 高通量小RNA定序分析平台之建立及其應用
3. 由結構與輔酶A的結合試驗比較幽門螺旋桿菌磷酸泛酸醯基乙胺腺苷轉移酶與其突變種的差異
4. 果蠅多巴胺乙醯基轉移酶的基質通道大小對酵素活性之影響
5. The Alexander disease causing mutations of GFAP are deleterious to filament assembly and network formation
6. A Unique H-Bond Identified in Hydrophobic Cavity no Longer to Stabilize Protein Structure
7. Heparin binding specificity of PWWP/HATH domains of HDGF and HDGF-related proteins
8. PART Ι. 藉由離氨酸及半胱氨酸標定的二維差異電泳分析紫外光照射所引起之蛋白質體的表現量變化及巰基變化 PART Π. 透明質酸在鹼傷害的角膜細胞中所扮演的保護作用
9. 結合螢光量子點和免疫磁珠偵測特定細胞與其在癌症上的應用
10. Part I:藉由蛋白質體分析黃蓮素誘導乳癌細胞中之毒殺性機制 Part II:糖尿病 II-I:利用蛋白質體找出第一型糖尿病血漿生物標誌分子:發現 hemopexin為第一型糖尿病患者腎病血漿中新穎性生物標誌分子 II- II:藉由蛋白質體找出第二型糖尿病患者腎病血漿中生物標誌分子
11. 植物非專一性脂質傳輸蛋白質資料庫之建立與分析
12. 開發快速合成唾液酸多醣之方法與製備唾液酸多醣晶片用於研究流感病毒表面抗原血液凝集素
13. 稻米花藥非特異性脂質傳輸蛋白質之純化、特性與功能研究
14. Identification of Essential Lysines Involved in Substrate Binding of Vacuolar H+-Pyrophosphatase
15. 在動物細胞中研究CAP2 和多甲氧基黃酮於粒線體融合及分裂中扮演之角色