跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 10:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林子瑋
研究生(外文):Lin, Tzu-Wei
論文名稱:利用光注入半導體雷射於雙頻雷射都普勒測速儀之研究
論文名稱(外文):Study of a Dual-Frequency Laser Doppler Velocimeter Utilizing an Optically Injected Semiconductor Laser
指導教授:林凡異
指導教授(外文):Lin, Fan-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:63
中文關鍵詞:雙頻雷射半導體雷射非線性動態都普勒測速儀斑點雜訊
外文關鍵詞:Dual frequencySemiconductor laserNonlinear dynamicsDopplerVelocimeterSpeckle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以半導體雷射之光注入系統產生的非線性動態為基礎,開發雙頻雷射都普勒測速儀。由於雷射光源的高同調性、高光強度以及發散角小的特性,使其在測速上相較於雷達具備高指向性、遠距離以及高精準度的表現。但目前所常使用的雷射都普勒測速儀,其速度偵測上的靈敏度相當高,而容易受到環境中的擾動干擾而影響測速準確度。此外,當粗糙物體的表面粗糙尺度大於雷射波長時,所引發斑點雜訊效應也會使都普勒頻寬產生增寬的現象,使測速的準確性以及解析度下降。因此,本研究提出雙頻雷射都普勒測速儀來解決上述問題。本研究成果包含以下幾個部分:(1)首先,我們運用低功率半導體雷射的光注入系統,產生穩定的雙頻雷射,將之作為基礎,搭配都普勒測速原理,成功架設一套雙頻雷射都普勒測速儀,(2)將上述開發的測速儀進行速度測量,以透過實驗的方式驗證雙頻雷射於測速的可行性。當目標物的移動速度範圍在1 cm/s ∼ 100 cm/s,量測到之速度與實際值之誤差均小於1.2 %,(3)從理論的推演和數值模擬的方式出
發,來探討雙頻雷射都普勒測速儀於粗糙物體進行速度量測時,是否能抑制斑點雜訊效應。由數值模擬的結果發現,雙頻雷射相較單頻雷射的測速儀而言,能使足以造成明顯頻寬增寬的粗糙物之粗糙尺度提升了將近4 個數量級。此外,實驗量測結果也初步觀察到雙頻雷射都普勒測速儀,於粗糙物體造成斑點雜訊效應的抑制能力。當待測物為拋光紙,且待測物通過雷射光束的橫向移動速度為2 cm/s ∼ 3.6 cm/s的條件下,使用雙頻雷射的都普勒頻寬會是單頻雷射的千分之一。
In this research, we successfully developed a dual-frequency Laser Doppler Velocimeter (LDV) based on an optically injected semiconductor laser. With the advantages of high coherence, high power, and low divergence angle, the LDV has long detection range, good precision and accuracy, and great target selection ability. However, with a wavelength in the micrometer range, the LDV is very sensitive to the atmosphere noise and the surface nature of the detection targets. For objects that have surface roughnesses larger than the wavelength of the emitting laser, the speckle effect will be induced and the bandwidth of the detection signal will be broadened. Under such circumstance, the accuracy and resolution in velocity measurement will be degraded. Therefore, we proposed and developed a dual-frequency LDV based on the nonlinear dynamics of semiconductor lasers to mitigate the speckle effect. Three major achievements have been realized in this study: (1) developing the dual-frequency LDV based on the nonlinear dynamics of semiconductor lasers, (2) demonstrating velocity measurement in a velocity range of 1 cm/s to 100 cm/s with an accuracy smaller than 1.2 %, and (3) comparing the dual-frequency LDV with a single-frequency LDV to show its ability in suppressing the speckle effect.
致謝 I
摘要 III
Abstract IV
目錄 V
圖目錄 VII
表目錄 XII
1 緒論 1
2 原理 4
2.1 半導體雷射之光注入系統. . . . . . . . . . . . . . . .5
2.2 都普勒效應 . . . . . . . . . . . . . . . . . . . . .8
2.3 雙頻雷射都普勒測速儀. . . . . . . . . . . . . . . . .12
2.3.1 電訊號混頻. . . . . . . . . . . . . . . . . . . . .13
2.3.2 光訊號混頻. . . . . . . . . . . . . . . . . . . . .15
2.4 斑點雜訊效應. . . . . . . . . . . . . . . . . . . . .18
2.4.1 單頻雷射都普勒測速儀於斑點雜訊之頻率增寬現象. . . .19
2.4.2 雙頻雷射都普勒測速儀於斑點雜訊之抑制能力. . . . . .20
3 實驗結果 22
3.1 雙頻雷射之產生. . . . . . . . . . . . . . . . . . . .23
3.2 雙頻雷射都普勒測速儀於理想反射物之速度量測結果. . . .27
3.3 雙頻雷射都普勒測速儀於粗糙物之速度量測. . . . . . . .40
3.3.1 斑點雜訊效應影響都普勒測速之模擬結果. . . . . . . .40
3.3.2 使用雙頻雷射都普勒測速儀抑制斑點雜訊效應之實驗結果.43
4 結論與未來展望 54
4.1 結論. . . . . . . . . . . . . . . . . . . . . . . . .54
4.2 結果討論. . . . . . . . . . . . . . . . . . . . . . .56
4.3 未來展望. . . . . . . . . . . . . . . . . . . . . . .59
參考文獻 61
[1] T. H. Maiman, ”Stimulated optical radiation in Ruby”, Nature 187, 493 (1960)
[2] C. Weitkamp, ”Lidar: range-resolved optical remote sensing of the atmosphere”,Springer, New York, (2005).
[3] M.W. Long, ”Radar reflectivity of land and sea”, Artech House, Boston, (2001).
[4] A.E. Siegman, ”Lasers”, University Science Books, Mill Valley, (1986).
[5] J.D. Briers, ”Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging, Physiological Measurement 22, R35 (2001).
[6] R. Gerbach, ”Identification of mechanical defects in MEMS using dynamic measurements for application in production monitoring”, Microsystem Technologies-Microand
Nanosystems-Information Storage and Processing Systems, 16 1251 (2010).
[7] Y. Yeh and H.Z. Cummins, ”Localized fluid flow measurements with an He-Ne laser spectrometer”, Appl. Phys. Lett., 4 176 (1964).
[8] J.W. Foreman, ”Measurement of localized flow velocities in gases with a laser Doppler flowmeter”, Appl. Phys. Lett., 7 77 (1965).
[9] F. Durst and J.H. Whitelaw, ”Optimization of optical anemometers”, Proc. Roy. Soc. London, 157 (1971).
[10] G.R. Grant and K.L. Orloff, ”Two-color dual-beam backscatter laser Doppler velocimeter”,Appl. Opt., 12 2913 (1973).
[11] W.L. Eberhard, ”Dual-frequency Doppler-lidar method of wind measurement”,Appl. Opt., 19 2967 (1980).
[12] L. Morvan, ”Building blocks for a two-frequency laser lidar-radar: a preliminary”,Appl. Opt., 41 5702 (2002).
[13] R. Diaz, ”Lidar detection using a dual-frequency source”, Opt. Lett., 31 3600 (2006).
[14] J. Mork, ”Chaos in semiconductor-lasers with optical feedback - theory and experiment”,IEEE J. Quantum Electron., 28 93 (1992).
[15] T.B. Simpson, ”Period-doubling cascades and chaos in a semiconductor-laser with optical-injection”, Phys. Rev. A, 51 4181 (1995).
[16] V. Kovanis, ”Instabilities and chaos in optically injected semiconductor-lasers”,Appl. Phys. Lett., 67 2780 (1995).
[17] F.Y. Lin, ”Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback”, IEEE J. Quantum Electron., 39 562 (2003).
[18] J. Ohtsubo, ”Semiconductor Lasers Stability, Instability and Chaos”, Heidelberg:Springer-Verlag, Berlin (2008).
[19] R.T. Menzies, ”Coherent Doppler LIDAR for measurements of wind fields”, Proceedings of the IEEE, 449 (1989)
[20] M. Denman, ”Speckle noise reduction in laser vibrometry: Experimental and numerical optimisation”, Second International Conference on Vibration Measurements
by Laser Techniques: Advances and Applications, 12 (1996).
[21] S. Rothberg, ”Numerical simulation of speckle noise in laser vibrometry”, Appl. Opt., 45 4523 (2006).
[22] W. Huang, ”Effect of angle of incidence on self-mixing laser Doppler velocimeter and optimization of the system”, Opt. Commun., 281 1662 (2008).
[23] T.B. Simpson and F. Doft, ”Double-locked laser diode for microwave photonics applications”,IEEE Photon. Technol. Lett., 11 1476 (1999).
[24] F.Y. Lin, S.Y. Tu, C.C. Huang and S.M. Chang, ”Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection”, IEEE J. Quantum Electron.,15 604 (2009).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top