跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/18 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王淳楷
研究生(外文):Wang, Chun-Kai
論文名稱:鐵鈀金三元鐵磁性記憶合金塊材研究
指導教授:胡塵滌胡塵滌引用關係
指導教授(外文):Hu, Chen-Ti
口試委員:吳錫侃楊聰仁
口試日期:2011-06-21
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:117
中文關鍵詞:鐵磁性形狀記憶合金麻田散相變化磁伸縮形狀記憶效應
外文關鍵詞:Ferromagnetic shape memory alloyMartensitic transformationMagnetostrictionShape memory effect
相關次數:
  • 被引用被引用:2
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討熱鍛、熱輥壓與熱機處理後Fe70Pd30-XAuX(X=3,5,7)塊材試片其微結構、相變化溫度、磁性質、磁伸縮值、形狀記憶效應、織構的變化。
用熱輥壓製備AuX(X=0,3,5,7)塊材試片,發現添加Au可改善試片抗氧化性與塑性變形能力,減少熱輥壓產生的裂紋。在冷輥過程中發現Au5(1)- TMT2試片具有177.33%的長度變化,初步推測原因為試片母相結構為非序化 fcc結構,添加Au更增加傾向類似Au的巨大塑性變形能力,其中機制待更進一步研究。
熱機處理後的AuX-TMT1(X=3,5,7)塊材試片中Au5(1)-TMT1、Au7-TMT1在室溫下結構為熱彈性fct麻田散相,顯示添加Au可提升相變化溫度,以添加5% Au效果最好可提升Ms約30K,得到最低晶格常數比值(c/a)為0.93。各試片降至液態氦溫度4K仍不會產生非熱彈性bct麻田散相,顯示添加Au能有效抑制bct生成。
室溫飽和磁化量以Au3-TMT1最高,Au5(1)-TMT1最低,矯頑磁場變化趨勢則相反;磁伸縮值上,θ=90o時的最大磁伸縮值隨Au含量增加而上升。
形狀記憶效應方面,成份相同的Au5試片,形狀回復率隨試片厚度增加而升高。不同成份的Fe70Pd(30-x)AuX試片在近似厚度下,各塊材試片形狀記憶回復率大致相同。

第一章 緒論 1
1-1前言 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 鐵磁性形狀記憶合金導論 3
2-2 形狀記憶效應原理 3
2-3 磁伸縮[18,19] 5
2-4 鐵磁性形狀記憶效應 6
2-5 鐵磁形狀記憶合金的應用 8
2-6 Fe-Pd形狀記憶合金文獻回顧 8
2-7 Fe-Pd合金製程文獻回顧 9
2-8 Fe-Pd形狀記憶合金相變化文獻回顧 9
2-9 形狀記憶效應 12
2-10 磁性質與磁伸縮(鐵磁形狀記憶效應) 13
2-11 添加第三元素的文獻回顧 15
2-12 Fe-Pd理論計算文獻回顧 16
第三章 實驗步驟及方法 32
3-1 試片製備 32
3-1-1 合金鑄錠熔煉 32
3-1-2 熱鍛與熱輥壓 32
3-1-3 熱機處理(Thermal-Mechanical Treatment , TMT) 33
3-2 成份分析 33
3-3 熱示差掃描卡量計(Differential Scanning Calormetry )量測 34
3-4 結構分析及觀察 34
3-4-1 室溫X-ray繞射分析 34
3-4-2 變溫X-ray繞射分析 34
3-4-3 光學顯微鏡(Optical Microscope , OM)顯微結構觀察 35
3-5 磁性質量測 35
3-6 磁伸縮量測 36
3-7 形狀記憶效應測試 36
3-8 儀器與量測原理 37
3-8-1 X光繞射儀(X-Ray Diffractometer) 37
3-8-2 熱示差掃描卡量計(Differential Scanning Calormetry )[92] 37
3-8-3 振動樣品磁量儀(Vibrating-Sample Magnetometer , VSM) 38
3-8-4超導量子干涉儀(Superconducting Quantum Interference Devices,SQUID) 38
3-8-5 應變規(Strain Gauge) 39
第四章 結果與討論 47
4-1 試片代號介紹 47
4-1-1 塊材試片處理情況 47
4-2 試片基本性質研究 48
4-2-1 ICP-MS(Inductively Coupled Plasma Mass Spectrometry)成份分析 48
4-2-2 室溫X-Ray繞射分析 48
4-2-3 變溫X-Ray繞射分析 49
4-2-4 晶格常數與(c/a)比值討論 50
4-2-5 DSC熱分析 51
4-2-6 光學顯微鏡金相觀察 52
4-2-7 磁化量對溫度循環研究(SQUID Method) 53
4-2-8 磁通量研究(VSM Method) 54
4-2-9 磁伸縮研究 55
4-2-10 形狀記憶效應研究 56
4-2-11 試片織構對各項性質之探討 57
第五章 結論 101
第六章 參考文獻 103


[1] V. Kokorin and M. Wuttig, “Magnetostriction in ferromagnetic shape memory alloys”, Journal of Magnetic and Magnetic Materials 234(2001), p.p.25-30.
[2] Ullakko, J. k. Huang, C.Kantner, C. O’Handley and V. V. Kokorin, “Large magnetic-field-induced strains in Ni2MnGa single crystals “,Applied Physics Letter 69(1996), p.p.1966-1968.
[3] Kakeshita, K.Shimizu, S.Funada and M.Date, Trans., ” Magnetic Field-induced Martensitic Transformations in Disordered and Ordered Fe-Pd Alloys”, Transactions of the JAPAN Institute of Metals 25(1984), p.p.837-844.
[4] Chang and T.A. Read, Trans. AIME., 189(1951) ,p.47.
[5] C.M. Wayman, “Some Applications of Shape-memory Alloys”, Journal of
Metals, 32(1980) ,p.p.129-137.
[6] K. Otsuka and K. Shimuzu, “Development of Shape Memory Alloys” ,
ISIJ International. Rev., 29(1989), p.p.353-377.
[7] L. M Schetky, “Shape memory alloys”, Scientific American, 241(1979),
p.p.74-82.
[8] Y. Furuya, N. W. Hagood, H. Kimura and T. Watanabe,
“Shape memory effect and magnetostriction in rapidly solidified Fe-29.6 at %Pd alloy “, Materials Transactions JIM 39(1998), p.p.1248-1254.
[9] S. J. Murray, M. Marioni, S. M. Allen, R.C. O’Handley and T. A. Lograsso, “6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga“, Applied Physics Letters 77(2000), p.p.886-888.
[10] C.T. Hu,T. Goryczka,D. Vokoun,” Effects of the spinning wheel velocity on the microstructure of Fe–Pd shape memory melt-spun ribbons”, Scripta Materialia 50 (2004) 539–542
[11] C. Y. Yu, 國立清華大學碩士論文“FePdPt, FePdAu 鐵磁性形狀記憶合金磁性質及形狀記憶效應研究”, 第3章2005, p.p.47-120.
[12] L. Delaet, R. V. Krishnan, H. Tas and H. Warlimont, “Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. 1. Structural and Microstructural Changes Associated with Transformations“, Journal of Materials Science 9(1974), p.p.1521-1535.
[13] R. V. Krishnan, L. Delaet, H. Tas and H. Warlimont, “Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. 2. Macroscopic Mechanical-Behavior”, Journal of Materials Science 9(1974), p.p.1536-1544.
[14] H. Warlimont, L. Delaet, R. V. Krishnan and H. Tas, “Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. 3. Thermodynamics and Kinetics”, Journal of Materials Science 9(1974), p.p.1545-1555.
[15] T. Tadaki, K. Otsuka and K. Shimizu, “Shape Memory Alloys”, Annual Review of Materials Science, 18(1988), p.p.25-45.
[16] D. P. Dunne and C. M. Wayman, “Effect of Austenite Ordering on Martensite Transformation in Fe-Pd Alloys Near Composition Fe3. 2.Crystallography and General Features”, Metallurgical Transactions 4(1973), p.p.147-152.
[17] T. A. Schroder and C. M. Wayman, “Two-way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals “, Scripta Metallurgica 11(1977), p.p.225-230.
[18] D. Gignoux and M. Schlenker , “MagnetismⅠ Fundamantals”, chapter 3 and 12,(2002), p.p. 79-103 and p.p 351-396.
[19] D. Vokoun, Y. W. Wang, T. Goryczka, and C. T. Hu, “Magnetostriction and Shape Memory Properties of Fe-Pd Alloys with Co and Pt Additions”, Smart Materials, 2005.
[20] J. Cui, T.W. Shield and R.D. James, “Phase Transformation and Magnetic Anisotropy of An Iron-Palladium Ferromagnetic Shape-Memory Alloy “, Acta Materialia 52(2004), p.p.35-47.
[21] K. Ullakko, J.K. Huang, V.V. Kokorin and R.C. O’Handley, “Magnetically Controlled Shape Memory Effect in Ni2MnGa Intermetallics “Scripta Materialia 36(1997), p.p.1133-1138.
[22] K. Ullakko, “Magnetically Controlled Shape Memory Alloys: A New Class of Actuator Materials“, Joural of Materials Engineering and Performance 5(1996), p.p.405-409.
[23] 金重勳主編,“磁性技術手冊”,第31章 (2002), p.p. 409-419.
[24] K. Tanaka, T. Ichitsubo and M. Koiwa, “Effect of External Fields on Ordering of FePd “Material Science and Engineering A 312 (2001), p.p.118-127.
[25] P.R. Aitchison, J.N. Chapman, V. Gehanno, I.S. Weir, M.R. Scheinfein, S. McVitie and A. Marty, “High Resolution Measurement and Modelling of Magnetic Domain Structures in Epitaxial FePd (001) L1(0) Films With Perpendicular magnetisation”, Journal of Magnetism and Magnetic Materials 223(2001), p.p.138-146.
[26] T. Mohri, T. Horiuchi, H. Uzawa, M. Ibaragi, M. Igarashi and F. Abe, “Theoretical Investigation of L1(0)-Disorder Phase Equilibria in Fe-Pd Alloy System “, Journal of Alloys and Compounds 317-318(2001), p.p.13-18.
[27] L.S. Wang, Z.H. Fan and D.E. Laughlin, “Trace Analysis For Magnetic Domain Images of L1(0) Polytwinned Structures “, Scripta Materialia 47(2002), p.p.781-785.
[28] T. Kakeshita and K. Ullakko, “Giant Magnetostriction in Ferromagnetic Shape-Memory Alloys”, Mrs Bulletin 27 (2002), p.p.105-109.
[29]I.Kock,T.Edler,S.G.Mayr,”Growth behavior and intrinsic properties of vapor-deposited iron palladium thin films”, JOURNAL OF APPLIED PHYSICS 103, 046108 (2008)
[30] Y. Furuya, N. W. Hagood, P. Kimura and T. Watanabe, “Shape Memory Effect and Magnetostriction in Rapidly Solidified Fe-29.6 at %Pd Alloy “, Materials Transactions JIM 39(1998), p.p.1248-1254.
[31] Y. W. Wang, 國立清華大學碩士論文“Fe-Pd鐵磁性形狀記憶合金添加第三元素之研究”,第3章2004, p.p.39-64.
[32] Iris Kock, Sven Hamann , Hayo Brunken , Tobias Edler , S.G. Mayr ,
Alfred Ludwig,” Development and characterization of Fe70Pd30
ferromagnetic shape memory splats”, Intermetallics (2010) 1–6.
[33] M. Sugiyama, R.Oshima and F.E. Fujita, “Martensitic- Transformation in the Fe-Pd Alloy System“, Transactions of the JAPAN Institute of Metals25(1984), p.p.585-592
[34] R. Hultgren and C.A. Zapffe, Nature 142(1938), p.395
[35] T. Sohmura, R. Oshima and F.E. Fujita, “Thermoelastic FCC-FCT Martensitic-Transformation in Fe-Pd Alloy“, Scripta Metallurgica. 14(1980), p.p.855-856.
[36] R. Oshima, “Successive Martensitic Transformations in Fe-Pd Alloys“, Scripta Metallurgica 15(1981), p.p.829-833.
[37]Kenta Seki,Hiroaki Kura,Tetsuya Sato,” Size dependence of martensite transformation temperature in ferromagnetic shape memory alloy FePd”, JOURNAL OF APPLIED PHYSICS 103, 063910 (2008)
[38] M. Sugiyama, R.Oshima and F.E. Fujita, “Mechanism of FCC-FCT Thermoelastic Martensite-Transformation in Fe-Pd Alloys“, Transactions of the JAPAN Institute of Metals 27(1986), p.p.719-730.
[39] H. Kato, Y. Liang and M. Taya, “Stress-induced FCC/FCT Phase Transformation in Fe-Pd Alloy “, Scripta Materialia 46(2002), p.p471-475.
[40] J.J. Felten, T.J. Kinkus, A.C.E. Reid, J.B. Cohen, and G.B. Olson, “Solid-Solution Structure and the Weakly First-Order Displacive Transformation in Fe-Pd Alloys “, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 28(1997), p.p. 527-536.
[41] J. Cui and R.D. James, “Study of Fe3Pd and Related Alloys for Ferromagnetic Shape Memory “, IEEE Transactions on Magnetics 37(2001), p.p.2675-2677.
[42] H. Kato, T. Wada, Y. Liang, T. Tagawa, M. Taya and T. Mori, “Martensite Structure in Polycrystalline Fe-Pd “, Materials Science and Engineering A 332(2002), p.p134-139.
[43] Y. Liang, T. Wada, H. Kato, T. Tagawa, M. Taya and T. Mori, “Straining of a polycrystal of Fe-Pd with martensite structure by uniaxial loading “, Materials Science and Engineering A 338(2002), P.P. 89-96.
[44] M. Matsui, T. Shimizu, H. Yamada snd K.Adachi, “Magnetic-Properties and Thermal-Expansion of Fe-Pd Invar- Alloys“, Journal of Magnetism and Magnetic Materials 15-18(1980), p.p. 1201-1202.
[45] T. Kubota, T. Okazaki, H. Kimura, T. Watanbe, M. Wutting and Y. Furuya, “Effect of Rapid Solidification on Giant Magnetostriction in Ferromagnetic Shape Memory Iron-based Alloys”, Science and Technology of Advanced Materials 2(2002), p.p.201-207.
[46] S. Inoue, K. Inoue, K. Koterazawa and K. Mizuuchi, “Shape Memory Behavior of Fe-Pd Alloy Thin Films Prepared by DC Magnetron Sputtering “, Materials Science and Engineering A 339(2003), p.p.29-34.
[47] S. Inoue, K. Inoue, S. Fujita and K. Koterazawa, “Fe-Pd Ferromagnetic Shape Memory Alloy Thin Films Made by Dual Source DC Magnetron Sputtering “, Materials Transactions 44(2003), p.p.298-304.
[48] M. Senthil Kumar,” Temperature dependence of magnetization in
Fe–Pd thin films”, Materials Science and Engineering B 162 (2009)
59–63.
[49] D. Vokoun and C.T. Hu, “Two-Way Shape Memory Effect in Fe-28-8 at.% Pd Melt-Spun Ribbons “, Scripta. Materialia. 47(2002), p.p.453-457.
[50] D. Vokoun and C.T. Hu, “Improvement of Shape Memory Characteristics in Fe-Pd Melt-Spun Shape Memory Ribbons “, Journal of Alloys and Compounds 346(2002), p.p.147-153.
[51] R.D. James and M. Wuttig, “Magnetostriction of Martensite” Philosophical Magazine A 77(1998), p.p.1273-1299.
[52] J. Koeda, Y. Nakamura, T. Gukuda, T. Kakeshita, T. Takeuchi and K. Kishio, Trans. Mat. Res. Soc. Jap. 26(2001), p.215
[53] J. Cui and R.D. James, “Study of Fe3Pd and Related Alloys for Ferromagnetic Shape Memory “, IEEE Transactions on Magnetics. 37(2001), p.p.2675-2677.
[54] T. Kakeshita and K. Ullakko, “Giant Magnetostriction in Ferromagnetic Shape-Memory Alloys “MRS Bulletin 27(2002), p.p.105-109.
[55] T. Kubota, T. Okazaki, Y. Furuya and T. Watanabe, “Large Magnetostriction in Rapid-Solidified Ferromagnetic Shape Memory Fe-Pd Alloy “, Journal of Magnetism and Magnetic Materials 239(2002), p.p.551-553.
[56] H.Y. Yasuda, N. Komoto, M. Ueda and Y. Umakoshi, “Microstructure Control for Developing Fe-Pd Ferromagnetic Shape Memory Alloys”, Science and Technology of Advanced Materials 3(2002), p.p.165-169.
[57] T. Okazaki, H. Nakajima and Y. Furuya, “Large Magnetostriction of Fe-29.6 at% Pd Alloy Ribbon Under Tensile Stress”, Materials Transactions 44(2003), p.p.665-668.
[58] Y. Liang, Y. Sutou, T. Wada, C. C. Lee, M. Taya, T. Mori., “Magnetic Field-Induced Reversible Actuation Using Ferromagnetic Shape Memory Alloys”, Scripta Materialia 48 (2003), p.p.1415-1419.
[59] R.A. Stern, S.D. Willoughby, A. Ramirez J.M. MacLaren, J. Cui, Q. Pan and R.D. James, “Electronic and Structural Properties of Fe3Pd-Pt Ferromagnetic Shape Memory Alloys”, Journal of Applied Physics 91(2002), p.p.7818-7820.
[60] T. Wada, T. Tagawa and M. Taya, “Martensitic Transformation in Pd-rich Fe-Pd-Pt Alloy”, Scripta Materialia 48(2003), p.p.207-211.
[61] K. Tsuchiya, T. Nojiri, H. Ohtsuka and M. Umemoto, “Effect of Co and Ni on Martensitic Transformation and Magnetic Properties in Fe-Pd Ferromagnetic Shape Memory Alloys”, Materials. Transactions 44(2003), p.p.2499-2502.
[62]V.Sanchez-Alarcos,V.Recarte,J.I.P’erez-Landaza’bal,M.A.Gonza’lez,J.A.Rodri’guez-Velama’zan,”Effect of Mn Addition on the structural and magnetic properties of Fe-Pd ferromagnetic shape memory alloys”,Acta Materialia 57 (2009) 4224-4232.
[63] S. U. Jen,Yuan-Tsung Chen,T.L. Tsai,”Magnetostrictive strains in
polycrystalline FePdRh alloy”,Journal of Applied Physics
103,07B902 2008
[64] Yin-Chih Lin , H. T. Lee, S. U. Jen,Y. T. Chen,” Magnetic structure of an Fe–Pd–Rh alloy”, JOURNAL OF APPLIED PHYSICS 101, 09N514 2007
[65] Yin-Chih Lin,Hwa-Teng Lee,” Magnetostriction and magnetic
structure in annealed recrystallization of strain-forged
ferromagnetic shape memory Fe–Pd–Rh alloys”, Journal of Applied
Physics 107, (2010)09D312
[66] S. Hamann, M.E. Gruner, S. Irsen, J. Buschbeck, C. Bechtold , I. Kock,
S.G. Mayr, A. Savan, S. Thienhaus, E. Quandt, S. Fahler, P. Entel, A. Ludwig,
“The ferromagnetic shape memory system Fe–Pd–Cu”, Acta Materialia,58(2010)
pp. 5949-5961.
[67] Yin-Chih Lin, Chien-Feng Lin, Jin-Bin Yang, and Hwa-Teng Lee,” Microstructures and magnetostriction of two-phase Fe66-Pd30-Ni4 high-temperature ferromagnetic shape memory alloys”, JOURNAL OF APPLIED PHYSICS 109,(2011)07A912
[68] R. C. O’Handley ,” Model for strain and magnetization in magnetic shape-memory alloys”,J Appl Phys;83, (1998) ; 3263
[69] S. J. Murray, R. C. O’Handley, and S. M. Allen ,” Model for discontinuous actuation of ferromagnetic shape memory alloy under stress ”,J Appl Phys ,89 (2001)pp.1295
[70] N. I. Glavatska, A. A. Rudenko, I. N. Glavatskiy and V. A. L'vov ,” Statistical model of magnetostrain effect in martensite”,J Magn.Magn Mater 2003;265:142.
[71] A.A.Likhachev,K.Ullakko,” Quantitative model of large magnetostrain effect in
ferromagnetic shapell memory alloys”,Eur.Phys.J.B,14(2000)pp.263 - 267.
[72] P. M?刜lner, V. A. Chernenko, M. Wollgarten, and G. Kostorz,” Large cyclic deformation of a Ni-Mn-Ga shape memory alloy induced by magnetic fields ”, J Appl. Phys.,92(2002)pp.6708.
[73] A. N. Bogdanov, A. DeSimone, S. M?刜ler and U. K. R??愮er,” Phenomenological theory of magnetic-field-induced strains in ferromagnetic shape-memory materials”,J Magn MagnMater,261(2003)pp.204 - 209.
[74] DI.Paul, J .Marquiss, D.Quattrochi,” Theory of magnetization: Twin
boundary interaction in ferromagnetic shape memory alloys”, Journal of applied physics,93(2003)pp.4561.
[75] A.Desimone, RD.James,” Energetics of magnetoelastic domains in ferromagnetic shape memory alloys”,J Phys IV France,112(2003)pp.969.
[76] N.Creton, L.Hirsinger,” Rearrangement surfaces under magnetic field and/or stress in Ni–Mn–Ga”,J Magn Magn Mater,832(2005)pp.290-291.
[77] B.Kiefer, DC.Lagoudas,” Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys”, Philos Mag,85 (2005)pp.4289 - 4329.
[78] J.Kiang, L.Tong , “Modelling of magneto-mechanical behaviour of Ni–Mn–Ga single crytals”,J Magn Magn Mater;292(2005)pp.394 - 412.
[79] Y.F. Ma, J.Y. Li,” A constrained theory on actuation strain in ferromagnetic
shape memory alloys induced by domain switching”, Acta Materialia,55(2007) pp.3261–3269
[80] Tokujiro Yamamoto,Minoru Taya, Yuji Sutou, Yuanchang Liang,Taishi Wada,Larry Sorensen,” Magnetic field-induced reversible variant rearrangement in Fe–Pd single crystals”, Acta Materialia 52 (2004) pp.5083–5091
[81] Ingo Opahle,Klaus Koepernik, Ulrike Nitzsche,and Manuel Richter ,” Jahn– Teller-like origin of the tetragonal distortion in disordered Fe–Pd magnetic shape memory alloys”, APPLIED PHYSICS LETTERS 94(2009)
[82] K. Koepernik and H. Eschrig,” Full-potential band-structure calculation of iron pyrite” Phys. Rev. B 59, (1999)pp. 1743; also see http://www.FPLO.de.
[83] See http://sham.phys.sci.osaka-u.ac.jp/kkr/ for more information about the
Akai-KKR code.
[84] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson,
D. J. Singh, and C. Fiolhais, Phys. Rev. B ,46 (1992)pp. 6671.
[85] A.T. Onisan, A.N. Bogdanov, U.K. Ro ?愮er,” Domain models for ferromagnetic shape-memory materials”, Acta Materialia , 58(2010)pp. 4378–4386
[86] Biswanath Dutta, Subhradip Ghosh*,”First-principles based investigation on effects of magnetism on lattice dynamics in Fe72Pd28 alloy”, Intermetallics,18 (2010) 1143e1147
[87] http://www.mse.nthu.edu.tw/about/property_om.php?Sn=30
[88] http://www.mse.nthu.edu.tw/about/property_om.php?Sn=7
[89] http://www.mse.nthu.edu.tw/~chlai/Facility/VSM.html
[90] http://rdweb.adm.nctu.edu.tw/page.php?serial=430
[91] 施志超,國立清華大學博士論文, “RT2材料的磁伸縮與磁性研究” 第2章,2002, pp.7-29.
[92] http://www.techmaxasia.com/articles/detail/1196063383(TechMax Technical Co.,
Ltd., Nov. 2003)
[93] V. Recarte_, C. Gomez-Polo, V. Sanchez-Alarcos, J.I. Peez-Landazabal,” Magnetic study of the martensitic transformation in a Fe–Pd alloy”, J. Mag. Mag. Mat. 316 (2007) e614–e617
[94] T. Wada, Y. Liang, H. Kato, T. Tagawa, M. Taya and T. Mori, “Structural Change
and Straining in Fe-Pd Polycrystals by Magnetic Field”, Materials Science and
Engineering A 361(2003), p.p.75
[95] Harunobu Tomita, Teiko Okazaki and Yasubumi Furuya,” Two-Way Shape
Memory Effect and Micromachine of Rapidly Solidified Ferromagnetic Fe–Pd
Ribbon”, Materials Transactions, Vol. 47, No. 3 (2006) pp. 615 to 618
[96] S. Hamann, A. Savan, S. Thienhaus, A. Ludwig,” Combinatorial Development of
Fe-Pd-Mn Ferromagnetic Shape Memory Thin Films”, ACTUATOR 2008, 11th
International Conference on New Actuators, Bremen, Germany, 9-11 June(2008)
[97] Tokujiro Yamamoto and Minoru Taya,” Reversible strain induced by martensite
variant rearrangement under magnetic field and mechanical loading of Fe–Pd
single crystals”, APPLIED PHYSICS LETTERS 90, 251905(2007)
[98] Tomoyuki Kakeshita, Takashi Fukuda,” Magnetic field-control of microstructure
and function of materials exhibiting solid–solid phase transformation”, Science
and Technology of Advanced Materials ,7; (2006) pp.350–355
[99] Yoichi Kishi, Zenjiro Yajima,Teiko Okazaki, Yasubumi Furuya and Manfred
Wuttig,” Magnetic Properties and Microstructures of Rapidly Solidified FePd
Alloy Ribbons”, Advances in Science and Technology Vol. 59 (2008) pp 24-29
[100] Teiko Okazaki, Yosinori Iwai* and Yasubumi Furuya,” Superelastic Properties
of Rapidly Solidified Fe-Pd Ribbons”, Materials Transactions, Vol. 49, No. 2
(2008) pp. 360 to 364
[101] Tatsuaki Sakamoto, Takashi Fukuda1, Tomoyuki Kakeshita, Tetsuya Takeuchi
and Kohji Kishio,” Influence of Magnetic Field Direction on Rearrangement of
Martensite Variants in an Fe-Pd Alloy”, Materials Transactions, Vol. 44, No. 12
(2003) pp. 2495 to 2498
[102] Y. Murakami, D. Shindo, T. Sakamoto, T. Fukuda , T. Kakeshita,” Magnetic
domain structure in the presence of very thin martensite plates: Electron
holography study on a thin-foil Fe–31.2 at.%Pd alloy”, Acta Materialia 54
(2006)pp. 1233–1239
[103] Vicente S?鴨chez-Alarcos, Jose Ignacio P?臆ez-Landaz?駭al,Vicente Recarte,”
Effect of Co and Mn Doping on the Martensitic Transformations and Magnetic
Properties of Fe-Pd Ferromagnetic Shape Memory Alloys”, Materials Science
Forum Vol. 635 (2010) pp. 103-110
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top