跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 06:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李彥錞
研究生(外文):Lee, Yen-Tui
論文名稱:奈米結構金薄膜製備及其於表面增強拉曼散射之應用
論文名稱(外文):Fabrication of Nanostructured Gold Films and Application for Surface-Enhanced Raman Scattering
指導教授:林鶴南
指導教授(外文):Lin, Heh-Nan
口試委員:李紫原裘性天
口試日期:2011-7-5
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:61
中文關鍵詞:表面增強拉曼散射奈米結構金薄膜
外文關鍵詞:surface-enhanced Raman scatteringnanostructured gold films
相關次數:
  • 被引用被引用:2
  • 點閱點閱:948
  • 評分評分:
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:0
拉曼散射乃光子與化學分子間之非彈性散射現象。表面增強拉曼散射大大地強化分子的微弱拉曼訊號,因而成為敏銳的分子鑑定工具,廣泛地應用在化學及生物領域。如此極度的增強效果乃由於入射電磁場與金屬區域性表面電漿子相互耦合,於金屬奈米結構周圍形成強烈近場分佈。
實驗中製備各種二維金奈米結構之SERS活性基板,包含金奈米薄膜、奈米孔隙金膜及奈米粒子-薄膜複合結構,並運用機械刮劃方式製作微米等級之擰屈狀金箔堆積。本研究以R6G為探測分子來進行SERS增強效應之探討。
厚度為2 nm至10 nm之金薄膜中,5 nm金膜的半連續薄膜結構形成豐富的熱點位置,獲得最強之R6G 分子SERS訊號,平均AEF達1.72 × 10^4。此外,由10至20 nm之奈米粒子與5 nm薄膜所組成的複合結構中,粒子分布密度約0.5/μm^2,可進一步提升十餘倍的強化效果,平均AEF達1.96 × 10^5。
實驗中製備10 nm至50 nm之奈米孔隙金膜,密集分佈的孔洞其尺寸約10 nm至250 nm。30 nm奈米孔隙金膜結構可獲得較佳的增強效果,AEF約為1.15 × 10^4。另外,奈米粒子與30 nm孔隙薄膜構成的複合結構其SERS效應僅獲得些微提升。
利用原子力顯微鏡與矽探針於20 nm至60 nm的金膜上進行機械刮劃,於刮痕末端自然形成微米等級之擰曲狀金箔堆積,此金屬堆積便形成良好的SERS熱點位置。於20 nm金膜上進行10 μm至700 μm不同長度之刮劃可獲得10^4 - 10^6之AEF值。此外,平行刮痕凹槽方向之偏振電場可進一步優化SERS效應,訊號強度提升二至三倍,並於40 nm金膜上之500 μm刮劃得最高AEF值,達3.80 × 10^5。

Raman scattering is an inelastic scattering of photons by chemical molecules. Surface-enhanced Raman scattering (SERS) greatly enhances the normally weak Raman signal and thus becomes a sensitive technique for identification of analyte molecules in chemical or biological analysis. The gigantic signal enhancement results from the intense optical field intensity produced around the metal nanostructures on a SERS-active substrate as the incident electromagnetic waves couple to the localized surface plasmons of the metal.
In this study, a number of SERS-active substrates with two-dimensional gold nanostructures including plain gold films, nanoporous gold films, and hybrid structures of gold nanoparticles (NPs) on film were prepared. A mechanical scratching method was also employed to create microscale piles of gold sheets. Rhodamine 6G (R6G) was used as the target molecule to evaluate the SERS effect.
Plain gold films with thicknesses ranging between 2 and 10 nm were prepared and the strongest SERS signal was obtained from the 5 nm thick film with an average analytical enhancement factor (AEF) of 1.72 × 10^4. It is believed that the semicontinuous framework of the 5 nm film provides abundant ‘hot spots’ and gives the strongest SERS signal. Furthermore, a hybrid film of NPs (10 to 20 nm in size and area density of 0.5/μm2) on the 5 nm thick gold film gives 10 times improvement and the AEF reaches around 1.96 × 10^5.
Nanoporous gold films with thicknesses ranging between 10 and 40 nm were prepared, and the sizes of these densely distributed pores range between 10 and 250 nm. An average AEF of 1.15 × 10^4 has been obtained for the 30 nm thick nanoporous film. A hybrid film of NPs on the 30 nm nanoporous film was also prepared, but the SERS effect was improved only marginally.
A commercial AFM and a silicon probe were employed to perform mechanical scratching on gold films with thicknesses of 20 to 60 nm. A microscale pile of rolled gold sheets was created at the end of a scratching and became an excellent SERS-active site. By using various scratching distances of 100 to 700 μm on 20 nm plain film, AEFs of 10^4 - 10^6 were obtained. In addition, the SERS signal is stronger when the incident light polarization is parallel to the scratching direction. A highest AEF of 3.80 × 10^5 has been obtained on a 40 nm thick gold film with a scratching of 500 μm.

誌謝 I
摘要 II
Abstract IV
圖目錄 IX
表目錄 XII
第一章 緒論
1.1 拉曼散射 2
1.2 表面增強拉曼散射 5
1.3 研究動機 6
第二章 文獻回顧
2.1 拉曼散射 8
2.1.1 拉曼散射理論 8
2.1.2 拉曼光譜及其特性 9
2.2 SERS增強機制 11
2.2.1 電磁增強機制 11
2.2.2 化學增強機制 15
2.3 距離與偏振效應 17
2.4 SERS發展與應用 20
第三章 實驗方法
3.1 實驗儀器 23
3.1.1 電子束蒸鍍系統 23
3.1.2 拉曼光譜儀 24
3.1.3 原子力顯微鏡 26
3.1.4 掃描式電子顯微鏡 26
3.2 實驗藥劑 28
3.3 SERS活性基板製備 30
3.3.1 金奈米薄膜製備 30
3.3.2 奈米孔隙金膜製備 30
3.3.3 奈米粒子-薄膜複合結構製備 31
3.3.4 AFM刮劃金屬堆積 31
3.4 拉曼光譜量測 33
3.5 SERS光譜量測 34
第四章 結果與討論
4.1 R6G拉曼光譜 36
4.2 金奈米薄膜SERS光譜 37
4.2.1 薄膜厚度 37
4.2.2 薄膜沉積速率 39
4.3 奈米孔隙金膜SERS光譜 40
4.4 奈米粒子-薄膜複合結構SERS光譜 41
4.5 AFM刮劃金屬堆積SERS光譜 43
4.5.1 刮劃長度 43
4.5.2 刮劃金膜厚度 46
4.5.3 偏振效應 47
4.5.4 人工刮劃 50
4.6 數據比較 52
第五章 結論 54
參考文獻 57

1. Raman, C.V. and K.S. Krishnan, A New Type of Secondary Radiation. Nature, 1928. 121: p. 501-502.
2. Raman, C.V., A New Radiation. Indian J. Phys., 1928. 2: p. 387-398.
3. Pelletier, M.J., Analytical Application of Raman Spectroscopy 1999, New York: Blackwell Science.
4. Jeanmaire, D.L. and R.P. Van Duyne, Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 84(1): p. 1-20.
5. Albrecht, M.G. and J.A. Creighton, Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode. Journal of the American Chemical Society, 1977. 99(15): p. 5215-5217.
6. Aroca, R., Surface Enhanced Vibrational Spectroscopy. 2008: Wiley.
7. Sloane, H.J., The Technique of Raman Spectroscopy: A State-of-the-Art Comparison to Infrared. Applied Spectroscopy, 1971. 25(4): p. 430-439.
8. 邱國斌&蔡定平,金屬表面電漿簡介,物理雙月刊,廿八卷二期 (2006)
9. Barnes, W.L., A. Dereux, and T.W. Ebbesen, Surface Plasmon Subwavelength Optics. Nature, 2003. 424(6950): p. 824-830.
10. Zayats, A.V. and Smolyaninov, II, Near-Field Photonics: Surface Plasmon Polaritons and Localized Surface Plasmons. Journal of Optics a-Pure and Applied Optics, 2003. 5(4): p. S16-S50.
11. Kelly, K.L., et al., The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. Journal of Physical Chemistry B, 2003. 107(3): p. 668-677.
12. Haynes, C.L., A.D. McFarland, and R.P. Van Duyne, Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2005. 77(17): p. 338A-346A.
13. Talley, C.E., et al., Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates. Nano Letters, 2005. 5(8): p. 1569-1574.
14. Campion, A. and P. Kambhampati, Surface-Enhanced Raman Scattering. Chemical Society Reviews, 1998. 27(4): p. 241-250.
15. Kneipp, K., et al., Surface-Enhanced Raman Scattering and Biophysics. Journal of Physics-Condensed Matter, 2002. 14(18): p. R597-R624.
16. Lin, H.Y., et al., Direct Near-Field Optical Imaging of Plasmonic Resonances in Metal Nanoparticle pairs. Optics Express, 2010. 18(1): p. 165-172.
17. Moskovits, M., Surface-Enhanced Raman Spectroscopy: A Brief Retrospective. Journal of Raman Spectroscopy, 2005. 36(6-7): p. 485-496.
18. Kneipp, K., et al., Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Physical Review Letters, 1997. 78(9): p. 1667-1670.
19. Cao, Y.W.C., R.C. Jin, and C.A. Mirkin, Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection. Science, 2002. 297(5586): p. 1536-1540.
20. Vo-Dinh, T., L.R. Allain, and D.L. Stokes, Cancer Gene Detection Using Surface-Enhanced Raman Scattering (SERS). Journal of Raman Spectroscopy, 2002. 33(7): p. 511-516.
21. Stewart, S. and P.M. Fredericks, Surface-Enhanced Raman Spectroscopy of Peptides and Proteins Adsorbed on an Electrochemically Prepared Silver Surface. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 1999. 55(7-8): p. 1615-1640.
22. Grubisha, D.S., et al., Femtomolar Detection of Prostate-Specific Antigen: An Immunoassay Based on Surface-Enhanced Raman Scattering and Immunogold Labels. Analytical Chemistry, 2003. 75(21): p. 5936-5943.
23. Braun, G., et al., Surface-Enhanced Raman Spectroscopy for DNA Detection by Nanoparticle Assembly onto Smooth Metal Films. Journal of the American Chemical Society, 2007. 129(20): p. 6378-6379.
24. Tao, A., et al., Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Nano Letters, 2003. 3(9): p. 1229-1233.
25. Alvarez-Puebla, R.A., D.S. Dos Santos, and R.F. Aroca, SERS Detection of Environmental Pollutants in Humic Acid-Gold Nanoparticle Composite Materials. Analyst, 2007. 132(12): p. 1210-1214.
26. Yonzon, C.R., et al., A Glucose Biosensor Based on Surface-Enhanced Raman Scattering: Improved Partition Layer, Temporal Stability, Reversibility, and Resistance to Serum Protein Interference. Analytical Chemistry, 2004. 76(1): p. 78-85.
27. Xu, H.X., et al., Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering. Physical Review Letters, 1999. 83(21): p. 4357-4360.
28. Yang, Y.C., et al., Electrochemical Growth of Gold Nanostructures for Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2011. 115(5): p. 1932-1939.
29. Kang, T., et al., Creating Well-Defined Hot Spots for Surface-Enhanced Raman Scattering by Single-Crystalline Noble Metal Nanowire Pairs. Journal of Physical Chemistry C, 2009. 113(18): p. 7492-7496.
30. Nie, S.M. and S.R. Emery, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 1997. 275(5303): p. 1102-1106.
31. Bjerneld, E.J., F. Svedberg, and M. Kall, Laser-Induced Growth and Deposition of Noble-Metal Nanoparticles for Surface-Enhanced Raman Scattering. Nano Letters, 2003. 3(5): p. 593-596.
32. Michaels, A.M., J. Jiang, and L. Brus, Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules. Journal of Physical Chemistry B, 2000. 104(50): p. 11965-11971.
33. Qian, L.H., et al., Surface Enhanced Raman Scattering of Nanoporous Gold: Smaller Pore Sizes Stronger Enhancements. Applied Physics Letters, 2007. 90(15).
34. Ru, E.C., et al., Surface Enhanced Raman Spectroscopy on Nanolithography-Prepared Substrates. Current Applied Physics, 2008. 8(3-4): p. 467-470.
35. Oran, J.M., et al., Nanofabricated Periodic Arrays of Silver Elliptical Discs as SERS Substrates. Journal of Raman Spectroscopy, 2008. 39(12): p. 1811-1820.
36. Willets, K.A. and R.P. Van Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 2007. 58: p. 267-297.
37. Mahajan, S., et al., Reproducible SERRS from Structured Gold Surfaces. Physical Chemistry Chemical Physics, 2007. 9(45): p. 6016-6020.
38. Jensen, T.R., et al., Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. Journal of Physical Chemistry B, 2000. 104(45): p. 10549-10556.
39. Ormonde, A.D., et al., Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy. Langmuir, 2004. 20(16): p. 6927-6931.
40. Alvarez-Puebla, R., et al., Nanoimprinted SERS-Active Substrates with Tunable Surface Plasmon Resonances. Journal of Physical Chemistry C, 2007. 111(18): p. 6720-6723.
41. Mulvihill, M., et al., Surface-Enhanced Raman Spectroscopy for Trace Arsenic Detection in Contaminated Water. Angewandte Chemie-International Edition, 2008. 47(34): p. 6456-6460.
42. Jensen, L. and G.C. Schatz, Resonance Raman Scattering of Rhodamine 6G as Calculated Using Time-Dependent Density Functional Theory. Journal of Physical Chemistry A, 2006. 110(18): p. 5973-5977.
43. http://en.wikipedia.org/wiki/R6G
44. Jana, S., et al., A Green Chemistry Approach for the Synthesis of Flower-Like Ag-Doped MnO2 Nanostructures Probed by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2009. 113(4): p. 1386-1392.
45. Ciou, S.H., et al., SERS Enhancement Factors Studies of Silver Nanoprism and Spherical Nanoparticle Colloids in the Presence of Bromide Ions. Journal of Physical Chemistry C, 2009. 113(22): p. 9520-9525.
46. Deng, S., et al., An Effective Surface-Enhanced Raman Scattering Template Based on a Ag Nanocluster-ZnO Nanowire Array. Nanotechnology, 2009. 20(17).
47. Habouti, S., et al., Self-Standing Corrugated Ag and Au-Nanorods for Plasmonic Applications. Journal of Materials Chemistry, 2011. 21(17): p. 6269-6273.
48. Gutes, A., C. Carraro, and R. Maboudian, Silver Nanodesert Rose as a Substrate for Surface-Enhanced Raman Spectroscopy. Acs Applied Materials & Interfaces, 2009. 1(11): p. 2551-2555.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top