跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/24 18:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴奕名
研究生(外文):Lai, Yi-Ming
論文名稱:以氧化鋅堆疊結構作為薄膜電晶體主動層之研究
論文名稱(外文):Study of Stacking ZnO Active Layer of Thin Film Transistor
指導教授:林樹均吳泰伯
指導教授(外文):Lin, Su-JienWu, Tai-Bor
口試委員:岑尚仁陳建亨
口試日期:2011-7-11
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:84
中文關鍵詞:氧化鋅薄膜電晶體堆疊結構
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:1
本論文以氧化鋅薄膜當作薄膜電晶體元件的主動層,結構是由原子層化學氣相沉積(ALD)所沉積之氧化鋅和射頻濺鍍氧化鋅堆疊所組成。結合ALD氧化鋅具有較均勻成膜及低電阻、高載子遷移率的特性,和射頻濺鍍氧化鋅具備低漏電流及高開關比之優點,期望在不影響關電流之條件下,藉由ALD薄膜來改善主動層和閘極氧化層間界面的性質,取得最佳電性。
由實驗結果得知,在閘極氧化層上先沉積一層極薄的ALD氧化鋅在鍍製上射頻濺鍍氧化鋅之堆疊結構,可有效改善元件電性,其開關電流比由純射頻濺鍍氧化鋅的1.78×10^7增加到4.5×10^7,臨界電壓由19 V降至13 V,且次臨界擺幅及場效載子遷移率也有改善現象,此證明了界面間得到了有效修補。而在鍍製好射頻濺鍍氧化鋅後所作的退火處理,能在更進一步降低其臨界電壓至7.5 V,其它元件量測之電性參數也得到些許提昇。

致謝
摘要
Abstract
目錄
表目錄
第一章 序論
1-1薄膜電晶體之發展及近況
1-2透明薄膜電晶體
1-3 研究動機
第二章 原理與文獻回顧
2-1 氧化鋅薄膜
2-1-1 氧化鋅基本性質
2-1-2 氧化鋅薄膜之運用
2-2 氧化鋅薄膜製備方法
2-2-1 物理氣相沉積法
2-2-2 化學氣相沉積法
2-2-3 化學液相沉積法
2-3 原子層化學氣相沉積法(ALCVD)
2-4 ALCVD技術優缺點
2-5 薄膜電晶體結構
2-6 n型薄膜電晶體操作原理
第三章 實驗儀器架構與流程
3-1 薄膜分析
3-1-1 X-ray繞射儀原理(X-ray diffraction, XRD)
3-1-2 X-ray反射率原理(X-ray Reflectometry, XRR)
3-1-3 In-plane X-ray Diffraction(IPXRD)
3-1-4 原子力顯微鏡(Atomic force microscopy, AFM)
3-1-5 掃描式電子顯微鏡(SEM)
3-2 電性分析
3-2-1 四點探針原理(Four-point probe)
3-2-2 霍爾效應量測原理(Hall measurement)
3-3 電晶體元件參數
3-3-1 開關電流比定義
3-3-2 臨界電壓定義(Vth)
3-3-3 場效載子遷移率定義(μFE)
3-3-4 次臨界擺幅定義(Subthreshold Swing, S. S.)
3-4 試片製作
3-4-1 基板結構
3-4-2 元件製作流程
3-5 量測流程
第四章 實驗結果與討論
4-1 氧化鋅薄膜表面形貌分析
4-1-1 SEM分析
4-1-2 AFM分析
4-2 氧化鋅結晶結構分析
4-2-1 XRR分析
4-2-2 XRD & In-plane XRD分析
4-3 氧化鋅薄膜電性量測
4-4 堆疊結構對主動層之影響
4-4-1 純射頻濺鍍氧化鋅之電性分析
4-4-2不同沉積厚度之ALD氧化鋅電性分析
4-4-3 電晶體參數分析
4-5 退火處理對元件特性之影響
4-5-1 輸出特性曲線圖分析
4-5-2 轉換特性曲線圖(IDS-VGS)分析
4-5-3 電晶體參數分析
4-6 與現行氧化鋅堆疊結構之比較
第五章 結論
參考文獻
[1] H. H. Hsieh and C. C. Wu, “Amorphous ZnO transparent thin-film transistors fabricated by fully lithographic and etching processes”, Appl. Phys. Lett., vol. 91 pp. 013502, (2007).

[2] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong and D. A. Keszler, “High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer”, Appl. Phys. Lett., vol. 86, pp. 013503, (2005).

[3] Hisato Yabuta, Masafumi Sano, Katsumi Abe, Toshiaki Aiba, Tohru Den, and Hideya Kumomi, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering”, Appl. Phys. Lett., vol. 89 pp. 112113, (2006).

[4] Wantae Lim, SeonHoo Kim, Yu-Lin Wang, J. W. Lee, D. P. Norton, S. J. Pearton, F. Ren and I. I. Kravchenko, “High-Performance Indium Gallium Zinc Oxide Transparent Thin-Film Transistors Fabricated by Radio-Frequency Sputtering”, J. Electrochem. Soci., vol. 155, pp. H385-H388, (2008).

[5] Ken Hoshino, David Hong, Hai Q. Chiang and John F. Wager, “Constant-voltage-bias stress testing of a-IGZO thin-film transistors”, IEEE Trans. Electron Devices, vol. 56, no. 7 (2009).

[6] Cherie R. Kagan and Paul Andry, “Thin Film Transistors,” MAECEL DEKKER , pp.161~164 (2001).

[7] H. S. Bae, M. H. Yoon, J. H. Kim and S. Im, “Photodetecting properties of ZnO-based thin-film transistors”, Appl. Phys. Lett., vol. 83, pp. 5313-5315, (2003).

[8] H. S. Bae, J. H. Kim and S. Im, “Mobility enhancement in ZnO-based TFTs by H treatment”, Electrochem. Solid-State Lett., vol.


7, pp. G279-G281, (2004).

[9] R. L. Hoffman, B. J. Norris and J. F. Wager, “ZnO-based transparent thin-film transistors”, Appl. Phys. Lett., vol. 82, no. 5, (2003).

[10] Satoshi Masuda, Ken Kitamura, Yoshihiro Okumura, Shigehiro Miyatake, Hitoshi Tabata and Tomoji Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties”, J. Appl. Phys., vol. 93, no. 3, (2003).

[11] Q. J. Yao and D. J. Li, “Fabrication and property study of thin film transistor using rf sputtered ZnO as channel layer”, J. Non-Crystalline Solids, vol. 351, pp. 3191-3194, (2005).

[12] Seokhwan Bang, Seungjun Lee, Joohyun Park, Soyeon Park, Wooho Jeong and Hyeongtag Jeon, “Investigation of the effects of interface carrier concentration on ZnO thin film transistors fabricated by atomic layer deposition”, J. Phys. D: Appl. Phys. Vol. 42, pp. 235102 (2009).

[13] Semyung Kwon, Seokhwan Bang, Seungjun Lee, Sunyeol Jeon, Wooho Jeong, Hyungchul Kim, Su Cheol Gong, Ho Jung Chang, Hyung-ho Park and Hyeongtag Jeon, “Characteristics of the ZnO thin film transistor by atomic layer deposition at various temperatures”, Semicond. Sci. Technol. Vol. 24, pp. 035015 (2009).

[14] ?? ?頊g?卣, Ya. I. Alivov, M. A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho and H. Morko?岭, “A comprehensive review of ZnO materials and devices,” Journal Appl. Phy., vol. 88, no. 041301, (2005).

[15] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO”, Progress in Materials Science, vol. 50, pp. 293–340, (2005).

[16] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, and H. Koinuma, and Y. Segawa, ”Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films”, Appl. Phys. Lett., 72 (1998) 3270-3272.


[17] X. W. Sun, S. F. Yu, C. X. Xu, C. Yuen, and B. J. Chen, “UV light source from a zinc oxide microtube”, JSID, 12 (2004) 505-508.

[18] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback and H. Shen, “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (01-12) sapphire by metalorganic chemical vapor deposition”, J. Appl. Phys., vol. 85, no. 5, (1999).

[19] P. Mitra, A. P. Chatterjee and H. S. Maiti, “ZnO thin film sensor”, Materials Letters, vol. 35, pp. 33-38, (1998).

[20] Y. S. Jung, J. Y. Seo, D. W. Lee and D. Y. Jeon, “Enhancement mode thin-film field-effect transistor using phosphorus doped (Zn,Mg) channel”, Thin Solid Films, vol. 445, no. 63, (2003).

[21] 李清楠, "下電極材料對原子層化學氣相沉積Al2O3高介電薄膜櫻用在奈米尺度世代DRAM影響之研究," 清華大學碩士論文, (2005).

[22] 李雅明, "固態電子學", 全華科技圖書, (1995).

[23] M. Houssa, "High-k Gate Dielectrics," Institute of Physics, 2004.

[24] Donald A.Neamen, “ZnO-based thin-film transistors of optimal device performance”, Fundamentals of Semiconductor Physics and Device 440 (2005).

[25] Mamoru Furuta, Yudai Kamada, Takahiro Hiramatsu, Chaoyang Li, Mutsumi Kimura, Shizuo Fujita and Takashi Hirao, “Positive Bias Instability of Bottom-Gate Zinc Oxide Thin-Film Transistors with a SiOx/SiNx-Stacked Gate Insulator”, J. J. Appl. Phys., 50, (2011).

[26] R. Navamathavan, E. J. Yang, J. H. Lim, D. K. Hwang, J. Y. Oh, J. H. Yang, J. H. Jang and S. J. Parka, “Effects of electrical bias stress on the performance of ZnO-based TFTs fabricated by RF magnetron sputtering”, J. Electrochem. Soci., vol. 153, pp. G385-G388, (2006).


[27] Elvira M. C. Fortunato, Pedro M. C. Barquinha, Ana C. M. B. G. Pimentel, Alexandra M. F. Gon?岬lves, Ant?曝io J. S. Marques, Rodrigo F. P. Martins and Luis M. N. Pereira, “Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature”, Appl. Phys. Lett., vol. 85 no. 13, (2004).

[28] 張茂男, “奈米通訊 No. 4”, 財團法人國家實驗研究院奈米元件實驗室出版委員會, (2008).

[29] Kittel, “Introduction to Solid State Physics” 7th edition, Wiley, New York, pp. 70, (1996).

[30] 林世傑,「國立交通大學」,碩士論文,民國92年

[31] D. K. Schroder, “Semiconductor material and device characterization”, A Wiley-Interscience Publication, Arizona, (1998).

[32] D. D. Fong, J. A. Eastman, S. K. Kim, T. T. Fister, M. J. Highland, P. M. Baldo, and P. H. Fuoss, “In situ synchrotron x-ray characterization of ZnO atomic layer deposition”, Appl. Phys. Lett., vol. 97, no. 191904, (2010).

[33] Riikka L. Puurunen and Wilfried Vandervorst, “Island growth as a growth mode in atomic layer deposition: A phenomenological model”, J. Appl. phys., vol. 96, no. 12, (2004).

[34] Cheol Hyoun Ahn, Chang HoWoo, SooYeon Hwang, Jeong Yong Lee, Hyung Koun Cho, Hyoung Jin Cho and Geun Young Yeom “Influence of active layer thickness and annealing in zinc oxide TFT grown by atomic layer deposition”, Surf. Interface Anal., vol. 42, pp. 955–958, (2010).

[35] Swee-Yong Pung, Kwang-Leong Choy, Xianghui Hou and Chongxin Shan, “Preferential growth of ZnO thin films by the atomic layer deposition technique”, Nanotechnology, vol.19, pp. 435609, (2008)

[36] S.J. Lim, Soonju Kwon, H. Kim, “ZnO thin films prepared by atomic layer deposition and rf sputtering as an active layer for thin film transistor”, Thin Solid Films, vol. 516, pp. 1523–1528, (2008)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊