跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 00:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾占宇
研究生(外文):Tseng, Chan-Yu
論文名稱:探討氧化鋅轉換層的厚度對於以其為基底的雙極性電阻轉換的全透明結構之影響
論文名稱(外文):The effect of ZnO film thickness on bipolar resistive switching behaviors of ZnO-based transparent structure
指導教授:林樹均甘炯耀
指導教授(外文):Lin, Su-JienGan, Jon-Yiew
口試委員:林樹均甘炯耀何志浩張文淵
口試日期:2011-07-12
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
中文關鍵詞:電阻式記憶體全透明氧化鋅
外文關鍵詞:RRAMTransparentZnO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本實驗成功以射頻磁控濺鍍法(Radio Frequency Magnetron Sputtering)在室溫下於商用ITO玻璃基板上鍍製ZnO薄膜,並以金屬光罩鍍製上電極ITO形成ITO/ZnO/ITO結構的全透明雙極性電阻式記憶體。本實驗改變氧化鋅電阻轉換層的厚度從19 nm、39 nm、78 nm及117 nm並量測其不同的元件電性,比較出最適合此元件的ZnO電阻轉換層厚度。並綜合其元件電性,輔以各層薄膜的物性及化性分析、改變電極大小及能帶圖,嘗試解釋其電阻轉換機制與其雙極性電阻轉換特性。最後以空間限制電流理論(SCLC)解釋本元件於高低阻態與相對應的電流傳導機制並探討ZnO厚度不同對此之影響,最後,改變上電極為Pt以驗證本元件符合SCLC理論。
鍍製出來的ITO/ZnO/ITO結構的全透明電阻式記憶體呈現雙極性的電阻轉換,推測可能的原因為上電極ITO的鍍製對上界面的破壞,使得氧空缺在上界面特別多,而且ITO為氧化物並扮演著儲氧層(Oxygen reservoir),使氧原子能夠在電極與氧化物間移動。並且發現ZnO厚度在78 nm的時候本元件有最佳表現。

第一章 緒論 1
第二章 文獻回顧 3
2.1記憶體簡介 3
2.2揮發性記憶體 6
2.3非揮發性記憶體 7
2.3.1 快閃記憶體(Flash) 7
2.3.2 鐵電記憶體(FRAM) 7
2.3.3 磁阻記憶體(MRAM) 8
2.3.4 相變化記憶體(PCRAM) 8
2.3.5電阻式記憶體(RRAM) 9
2.4 電阻式記憶體操作原理機制與分類 13
2.4.1鈣鈦礦結構電阻式記憶體 15
2.4.2 過度金屬氧化物類型 16
2.4.3 全透明電阻式記憶體(TRRAM) 16
第三章 實驗方法與步驟 31
3.1 實驗動機 31
3.2 實驗架構 32
3.3實驗流程 32
3.3.1 下電極製備 32
3.3.2 電阻轉換層製備 32
3.3.3上電極製備 33
3.4 薄膜分析 37
3.4.1 XRD結晶性分析 37
3.4.2四點探針 37
3.4.3 SPM 掃描式探針顯微鏡 38
3.4.4穿透率 38
3.4.5薄膜化學成分分析 39
3.4.6元件電性分析 39
第四章 實驗結果與討論 42
4.1薄膜結構與化學性質討論 42
4.1.1 XRD結晶性分析 42
4.1.2 SPM表面結構分析 42
4.1.3 歐傑電子縱深成分分析 43
4.1.4 X(紫外)光光電子能譜儀分析 (XPS、UPS) 43
4.2穿透率 50
4.3元件電性分析 53
4.3.1上下電極導電度分析 53
4.3.2 ITO/ZnO/ITO結構 ZnO厚度變化對元件特性探討 53
4.3.2.1 初始電阻值 53
4.3.2.2元件 Forming探討 54
4.3.2.3 厚度與I-V圖Vset / Vreset 、Iset/Ireset關係之探討 55
4.3.2.4耐久性及資料保存性的表現 57
4.3.2.5 .綜合比較 57
4.4 電阻轉換機制探討 72
4.4.1電極面積效應對電阻轉換的影響 72
4.4.2 以能帶圖解釋ITO/ZnO/ITO 結構初始二極體特性 73
4.4.3 以燈絲傳導理論解釋ITO/ZnO/ITO結構電阻轉換並探討其厚度效應 74
4.4.4 以SCLC解釋ITO/ZnO/ITO結構電流傳導機制並探討其厚度效應 75
4.4.5 以ITO/ZnO/ Pt結構重複驗證SCLC傳導機制 77
第五章 結論 90
第六章 參考文獻 92

1. I. Innovative Research and Products (iRAP), "Advanced Solid-state Memory Systems And Products: Emerging Non-volatile Memory Technologies, Industry Trends And Market Analysis ", (2011).
2. L. Myoung-Jae, P. Youngsoo, K. Bo-Soo, A. Seung-Eon, L. Changbum, K. Kihwan, X. Wenxu, G. Stefanovich, L. Jung-Hyun, C. Seok-Jae, K. Yeon-Hee, L. Chang-Soo, P. Jong-Bong and Y. In-Kyeong, presented at the Electron Devices Meeting, 2007. IEDM 2007. IEEE International, (2007).
3. C. Muller, presented at the Symposium on VLSI, 2008. ISVLSI '08. IEEE Computer Society Annual, (2008).
4. R. Waser, R. Dittmann, G. Staikov and K. Szot, "Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges", Advanced Materials 21 (25-26), 2632-2663 (2009).
5. G. Muller, T. Happ, M. Kund, L. Gill Yong, N. Nagel and R. Sezi, presented at the Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, (2004).
6. R. Bez and A. Pirovano, "Non-volatile memory technologies: emerging concepts and new materials", Materials Science in Semiconductor Processing 7 (4-6), 349-355 (2004).
7. S. YunSeung, presented at the VLSI Circuits, 2005. Digest of Technical Papers. 2005 Symposium on,156-159 (2005).
8. 簡昭欣、呂正傑、陳志遠、張茂南、許世祿、趙天生, "先進記憶體簡介", 國研科技 1, 31.
9. 劉志益、曾俊元, "電阻式非揮發記憶體的近期發展".
10. S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi and M. DeHerren, "Progress and outlook for MRAM technology", Transactions on Magnetics, IEEE 35 (5), 2814-2819 (1999).
11. G. Muller, N. Nagel, C. U. Pinnow and T. Rohr, presented at the Solid-State Circuits Conference, 2003. ESSCIRC '03. Proceedings of the 29th European, (2003).
12. H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien and M. J. Tsai, presented at the Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008.
13. R. Waser and M. Aono, "Nanoionics-based resistive switching memories", Nat Mater 6 (11), 833-840 (2007).
14. A. Sawa, "Resistive switching in transition metal oxides", Materials Today 11 (6), 28-36 (2008).
15. S. Kim and Y. K. Choi, "A Comprehensive Study of the Resistive Switching Mechanism in Al/TiOx/TiO2/Al-Structured RRAM", IEEE Transactions on Electron Devices 56 (12), 3049-3054 (2009).
16. M. C. Chen, T. C. Chang, S. Y. Huang, S. C. Chen, C. W. Hu, C. T. Tsai and S. M. Sze, "Bipolar Resistive Switching Characteristics of Transparent Indium Gallium Zinc Oxide Resistive Random Access Memory", Electrochemical and Solid State Letters 13 (6), II191-II193 (2010).
17. G.-S. Park, X.-S. Li, D.-C. Kim, R.-J. Jung, M.-J. Lee and S. Seo, "Observation of electric-field induced Ni filament channels in polycrystalline NiOx film", Applied Physics Letters 91 (22), 222103 (2007).
18. U. Russo, D. Ielmini, C. Cagli and A. L. Lacaita, "Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices", Transactions on Electron Devices, IEEE 56 (2), 193-200 (2009).
19. U. Russo, D. Ielmini, C. Cagli and A. L. Lacaita, "Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices", Transactions on Electron Devices, IEEE 56 (2), 186-192 (2009).
20. Y. C. Yang, F. Pan, Q. Liu, M. Liu and F. Zeng, "Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application", Nano Letters 9 (4), 1636-1643 (2009).
21. C. Schindler, M. Meier, R. Waser and M. N. Kozicki, presented at the Non-Volatile Memory Technology Symposium, 2007. NVMTS '07, (2007).
22. Y.-M. Kim and J.-S. Lee, "Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices", Journal of Applied Physics 104 (11), 114115 (2008).
23. K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama and H. Tanaka, "Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide", Applied Physics Letters 89 (10), 103509 (2006).
24. A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Sun, Y. Y. Xue and C. W. Chu, "Field-driven hysteretic and reversible resistive switch at the Ag--Pr0.7Ca0.3MnO3 interface", Applied Physics Letters 83 (5), 957-959 (2003).
25. S. Tsui, A. Baikalov, J. Cmaidalka, Y. Y. Sun, Y. Q. Wang, Y. Y. Xue, C. W. Chu, L. Chen and A. J. Jacobson, "Field-induced resistive switching in metal-oxide interfaces", Applied Physics Letters 85 (2), 317-319 (2004).
26. X. Chen, N. J. Wu, J. Strozier and A. Ignatiev, "Direct resistance profile for an electrical pulse induced resistance change device", Applied Physics Letters 87 (23), 233506 (2005).
27. T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe and Y. Tokura, "Hysteretic current--voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3", Applied Physics Letters 86 (1), 012107 (2005).
28. A. Sawa, T. Fujii, M. Kawasaki and Y. Tokura, "Hysteretic current--voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface", Applied Physics Letters 85 (18), 4073-4075 (2004).
29. R. Fors, S. I. Khartsev and A. M. Grishin, "Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition", Physical Review B 71 (4), 045305 (2005).
30. M. J. Rozenberg, I. H. Inoue and M. J. Sanchez, "Strong electron correlation effects in nonvolatile electronic memory devices", Applied Physics Letters 88 (3), 033510 (2006).
31. A. Asamitsu, Y. Tomioka, H. Kuwahara and Y. Tokura, "Current switching of resistive states in magnetoresistive manganites", Nature 388 (6637), 50-52 (1997).
32. Y. Tokura and Y. Tomioka, "Colossal magnetoresistive manganites", Journal of Magnetism and Magnetic Materials 200 (1-3), 1-23 (1999).
33. A. Beck, J. G. Bednorz, C. Gerber, C. Rossel and D. Widmer, "Reproducible switching effect in thin oxide films for memory applications", Applied Physics Letters 77 (1), 139-141 (2000).
34. M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg and B. P. Andreasson, "Role of Oxygen Vacancies in Cr-Doped SrTiO3 for Resistance-Change Memory", Advanced Materials 19 (17), 2232-2235 (2007).
35. S. Q. Liu, N. J. Wu and A. Ignatiev, "Electric-pulse-induced reversible resistance change effect in magnetoresistive films", Applied Physics Letters 76 (19), 2749-2751 (2000).
36. W. Y. Chang, J. H. Liao, Y. S. Lo and T. B. Wu, "Resistive switching characteristics in Pr0.7Ca0.3MnO3 thin films on LaNiO3-electrodized Si substrate", Applied Physics Letters 94 (17) 172107(2009).
37. R. Yang, X. M. Li, W. D. Yu, X. D. Gao, D. S. Shang, X. J. Liu, X. Cao, Q. Wang and L. D. Chen, "The polarity origin of the bipolar resistance switching behaviors in metal/La0.7Ca0.3MnO3/Pt junctions", Applied Physics Letters 95 (7), 072105 (2009).
38. I. Hwang, M. J. Lee, G. H. Buh, J. Bae, J. Choi, J. S. Kim, S. Hong, Y. S. Kim, I. S. Byun, S. W. Lee, S. E. Ahn, B. S. Kang, S. O. Kang and B. H. Park, "Resistive switching transition induced by a voltage pulse in a Pt/NiO/Pt structure", Applied Physics Letters 97 (5) 052106 (2010).
39. S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi and B. H. Park, "Reproducible resistance switching in polycrystalline NiO films", Applied Physics Letters 85 (23), 5655-5657 (2004).
40. W.-Y. Chang, Y.-C. Lai, T.-B. Wu, S.-F. Wang, F. Chen and M.-J. Tsai, "Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications", Applied Physics Letters 92 (2), 022110 (2008).
41. M. K. Yang, J. W. Park, T. K. Ko and J. K. Lee, "Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices", Applied Physics Letters 95 (4) 042105 (2009).
42. S. Y. Wang, D. Y. Lee, T. Y. Tseng and C. Y. Lin, "Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films", Applied Physics Letters 95 (11) 112904 (2009).
43. S. Kim, H. Y. Jeong, S. Y. Choi and Y. K. Choi, "Comprehensive modeling of resistive switching in the Al/TiOx/TiO2/Al heterostructure based on space-charge-limited conduction", Applied Physics Letters 97 (3) 033508 (2010).
44. J. W. Seo, J.-W. Park, K. S. Lim, J.-H. Yang and S. J. Kang, "Transparent resistive random access memory and its characteristics for nonvolatile resistive switching", Applied Physics Letters 93 (22), 223505 (2008).
45. L. Shi, D. S. Shang, J. R. Sun and B. G. Shen, "Bipolar Resistance Switching in Fully Transparent ZnO:Mg-Based Devices", Appl. Phys. Express 2 (10) 101602 (2009).
46. K. Zheng, X. W. Sun, J. L. Zhao, Y. Wang, H. Y. Yu, H. V. Demir and K. L. Teo, "An Indium-Free Transparent Resistive Switching Random Access Memory", Electron Device Letters, IEEE 32 (6), 797-799 (2011).
47. X. Cao, X. M. Li, X. D. Gao, X. J. Liu, C. Yang, R. Yang and P. Jin, "All-ZnO-based transparent resistance random access memory device fully fabricated at room temperature", J. Phys. D-Appl. Phys. 44 (25) 255104 (2011).
48. H.-H. Huang, W.-C. Shih and C.-H. Lai, "Nonpolar resistive switching in the Pt/MgO/Pt nonvolatile memory device", Applied Physics Letters 96 (19), 193505 (2010).
49. T. Torndahl, C. Platzer-Bjorkman, J. Kessler and M. Edoff, "Atomic layer deposition of Zn1-xMgxO buffer layers for Cu(In,Ga)Se2 solar cells", Progress in Photovoltaics 15 (3), 225-235 (2007).
50. N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang and B. Yu, "Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories", Applied Physics Letters 92 (23), 232112 (2008).
51. M. A. Lampert, "Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps", Physical Review 103 (6), 1648 (1956).
52. F.-C. Chiu, "Electrical characterization and current transportation in metal/Dy2O3/Si structure", Journal of Applied Physics 102 (4), 044116 (2007).
53. J. J. Yang, M. D. Pickett, X. Li, A. A. OhlbergDouglas, D. R. Stewart and R. S. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevices", Nature Nanotechnology 3 (7), 429-433 (2008).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top