跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/21 05:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯志諭
研究生(外文):Ko, Chih-Yu
論文名稱:氫氧化鎳修飾奈米鑽石薄膜開發高靈敏度非酵素型生物感測電極之應用
論文名稱(外文):Nickel Hydroxide Modified Nanodiamond Film for Application in Highly Sensitive Nonenzymous Biosensors
指導教授:黃金花黃金花引用關係
指導教授(外文):Huang, Jin-Hua
口試委員:黃金花吳禹利陳彥旭
口試日期:2011-07-25
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:105
中文關鍵詞:氫氧化鎳氮摻雜奈米鑽石電化學非酵素型生物感測器胺基酸葡萄糖
外文關鍵詞:nickel hydroxidenitrogen-dopednanodiamondelectrochemistrynonenzymousbiosensoramino acidglucose
相關次數:
  • 被引用被引用:1
  • 點閱點閱:866
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
  本研究利用氮摻雜奈米鑽石(nitrogen-doped nanodiamond, NND)薄膜為基板,以電子束蒸鍍鎳金屬薄膜於其表面,再利用循環伏特安培法(cyclic voltammetry, CV)表面成長氫氧化鎳(nickel hydroxide, Ni(OH)2)作為催化劑,完成氫氧化鎳(II)修飾鑽石電極(Ni(OH)2-NND)的製備。利用奈米鑽石電極本身大量奈米結構特徵,促使沉積之Ni(OH)2依附其構造而顯現特殊的奈米結構,使其針對非電化學活性胺基酸類神經傳導物質:D-絲胺酸(D-serine, Ser)、L-甘胺酸(L-glycine, Gly)、L-天門冬胺酸(L-aspartic acid, Asp)與γ-胺基丁酸(γ-aminobutyric acid, GABA)以及葡萄糖,有極佳的電催化效應。此非酵素型電極配合CV以及計時安培法(chronoamperometry, CA)兩種電化學分析技巧偵測上述分子,可證明其反應機制均屬於擴散控制,故Ni(OH)2-NND之特殊微結構與高粗糙度、高活性面積可有效促進分子擴散而有極佳的量測訊號。此外,此特徵結構也使電極維持高活性Ni(OH)2狀態,不需繁複的電極活化處理即可快速進行檢測。
  對不同鎳厚度修飾之Ni(OH)2-NND進行分析,發現以150 nm鎳修飾之電極,其表面表現大量微結構特徵而有最佳偵測訊號。以CV偵測Ser,在反應濃度20讣350 贡M間靈敏度可高達2500 贡A mM-1cm-2,最低偵側濃度估計為3.8 贡M(信號/雜訊比值3)。以CA偵測葡萄糖,靈敏度在反應濃度20讣1000 贡M及1讣9 mM之間分別為3200與1406 贡AmM-1cm-2,最低偵側濃度為1.5 贡M,且對尿酸(uric acid, UA)、乙醯胺酚(acetaminophen, AC)與抗壞血酸(ascorbic acid, AA)等干擾物有極佳的干擾阻抗能力。另外,對電極在長時間使用以及大氣中存放的測試,證明Ni(OH)2-NND穩定度極高。最後,以掃描式電子顯微鏡分析其表面形貌,並使用拉曼光譜分析其鑽石電極的化學組成。

In this research, nickel films with different thicknesses were deposited by electron-beam evaporation on nitrogen-doped nanodiamond (NND) substrates and then reacted to nickel hydroxide, Ni(OH)2 by cyclic voltammetry (CV) in alkaline solution. The morphology of Ni(OH)2 modified NDD electrodes was composed of sponge-like micro-structure and a large number of nano-spheres. The Ni(OH)2-NND exhibited high electrocatalysis ability to electroinactive amino acids such as D-serine (Ser), L-glycine (Gly), L-aspartic acid (Asp) and 讪-aminobutyric acid (GABA), which are key neurotransmitters in central nervous system of mankind. In addition, glucose could be also electrocatalyzed with great ease on Ni(OH)2-NND electrodes. The reaction mechanisms of above molecules on Ni(OH)2-NND were all determined to be the diffusion-controlled reaction by CV and chronoamperometry (CA). This outstanding electrocatalysis behavior could be ascribed to promoted heterogeneous diffusion by the feature structure and large active surface area of Ni(OH)2-NND. Besides, the Ni(OH)2-NND could be applied to instant measurements without any complex pre-treatment for Ni(OH)2 enrichment.
The dependence of Ni thickness on the electrocatalysis of Ni(OH)2-NND was investigated, and the result showed that the 150 nm Ni was superior to other thicknesses for detection to above molecules. The measurements conducted by CV in alkaline solution were used to define the sensitivities and linear dynamic ranges of those amino acids. The sensitivity to Ser response was up to 2.5 贡AmΜ-1cm-2 within the range from 20 to 350 贡M, and the limit of detection (LOD) was estimated to be 3.8 贡M at a signal-to-noise ratio of 3. As for glucose sensing, the sensitivity was around 3200 贡AmΜ-1cm-2 within the range from 20 to 1000 贡M and 1406 贡AmΜ-1cm-2 from 1 to 9 mM, with LOD of 1.5 贡Μ. The electrode also exhibited stable responses to glucose while interfered by species including ascorbic acid (AA), uric acid (UA) and acetaminophen (AC) which are common compounds in blood samples. Besides, the electrodes were stored in air for more than two months to examine the long-term stability of electrodes. The Ni(OH)2-NND electrodes were characterized by scanning electron microscopy and Raman spectroscopy.

摘要.................................................. I
Abstract.............................................. II
致謝.................................................. IV
總目錄................................................ VI

第一章 緒論........................................... 1
研究動機.............................................. 6
第二章 文獻回顧....................................... 7
2-1 生物感測器簡介.................................... 7
2-1-1 生物感測器之發展................................ 7
2-1-2 生物感測器之定義與種類.......................... 8
2-2 電化學簡介........................................ 11
2-2-1 電化學反應系統.................................. 11
2-2-2 影響電化學反應系統之因素........................ 13
2-3-1 伏特安培法(Voltammetry)......................... 14
2-3-2 計時安培法(Chronoamperometry)................... 18
2-4 鑽石電極簡介...................................... 20
2-4-1 鑽石材料化學性質................................ 21
2-4-2 鑽石材料的電子性質.............................. 22
2-4-3 鑽石材料的光譜學跟光學特性...................... 23
2-4-4 鑽石材料的電化學性質............................ 24
2-4-5 鑽石電極的電化學應用............................ 30
2-5 神經傳導物質簡介.................................. 31
2-6 非電化學活性胺基酸之分析技術...................... 33
2-7 葡萄糖感測器的發展與工作機制...................... 36
2-7-1 化學修飾材料.................................... 39
2-7-2 電極基板材料 .................................... 39
2-7-3 電極表面構造 .................................... 40
第三章 實驗材料、設備與方法 ........................... 42
3-1實驗藥品....... .................................... 42
3-2 電化學實驗所使用之溶液............................ 42
3-3 實驗設備.......................................... 43
3-3-1 電子束蒸鍍機 ................................... 43
3-3-2 電化學量測裝置.................................. 43
3-3-2 其他實驗分析設備及應用.......................... 44
3-4 實驗方法.......................................... 44
3-4-1 電子束蒸鍍鎳金屬薄膜............................ 44
3-4-2 循環伏特安培法成長氫氧化鎳...................... 44
3-4-3 電化學量測前置作業.............................. 45
3-4-4 鑽石電極清洗流程................................ 45
第四章 結果與討論..................................... 46
4-1 鑽石電極表面微結構與拉曼分析...................... 46
4-2 鎳薄膜蒸鍍鑽石電極表面微結構分析.................. 48
4-3 Ni(OH)2- NND之製備與分析.......................... 49
4-3-1 循環伏安法成長氫氧化鎳於鑽石電極................ 49
4-3-2 氫氧化鎳(II)修飾鑽石電極表面微結構分析.......... 52
4-3-3 氫氧化鎳修飾鑽石電極對胺基酸的電化學特性分析.... 54
4-3-4 氫氧化鎳(II/III)反應性測試...................... 58
4-4 循環伏安法分析胺基酸類神經傳導物質............... 61
4-4-1 Serine之CV分析.................................. 62
4-4-2 Glycine之CV分析................................. 68
4-4-3 Aspartic acid之CV分析........................... 72
4-4-4 GABA之CV分析.................................... 76
4-4-5 偵測極限分析.................................... 79
4-5葡萄糖之電化學檢測................................. 82
4-5-1氫氧化鎳修飾電極對葡萄糖之電化學分析............. 82
4-5-2氫氧化鎳(II)厚度對偵測葡萄糖之影響............... 85
4-5-3計時安培法分析葡萄糖............................. 93
4-5-4偵測極限分析..................................... 94
4-5-5干擾物測試....................................... 95
4-5-6電極基材之比較................................... 97
第五章 結論........................................... 99
第六章 參考文獻....................................... 101

[1] L. C. Clark, C. Lyons, Ann. N.Y. Acad. Sci. 102 (1962) 29.
[2] B. Danielsson, K. Mosbach, Oxford University Press, New York, 1989.
[3] H. H. Weetall, Biosens. Bioelectron. 11 (1996) 1.
[4] S. Shunzo, O. Yasushi, T. Hisashi, K. Hiroshi, N. Katsuhiko, Electrochim. Acta 45 (2000) 3813.
[5] J. Zhang, L. Bao, S. Yao, W. Wei, Microchem. J. 62 (1999) 405.
[6] J. N. Barisci, G. G. Wallace, R. H. Baughman, Electrochim. Acta 46 (2000) 509.
[7] B. Keita, L. Nadjo, D. Belanger, C. P. Wilde, M. Hilaire, J. Electroanal. Chem. 384 (1995) 155.
[8] C. Serge, Biosens. Bioelectron. 14 (1999) 443.
[9] M. I. Arben, F. Esteve, A. Salvador, Sens. Actuators B 60 (1999) 97.
[10] A. T. Linda, D. K. Keeley, P. A. George, S. L.Frances, Anal. Biochem. 233 (1996) 50.
[11] R. P. O. Ma, M. Hämäläinen, U. H. Danielson, Anal. Biochem. 279 (2000) 71.
[12] A. Sternesjo, Anal. Chem. 226 (1995) 175.
[13] S.V. Dzyadevych , V. N. Arkhypova, A. P. Soldatkin, A. V. El’skaya, C. Martelet, N. J. Renault, ITBM-RBM 29 (2008) 171.
[14] A. J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamentals and Applications ”,John Wiley & Sons, Singapore ,1980.
[15] 胡啟章,電化學原理與方法,五南圖書出版公司,2002.
[16] R. L. McCreery, Chem. Rev. 108 (2008) 2646.
[17] K. S. Pitzer, “Activity Coefficients in Electrolyte Solutions”, 2nd Edition, CRC Press, Inc. 2000.
[18] F. Scholz, “Electroanalytical Methods Guide to Experiments and Applications”, Springer, Berlin, 2002.
[19] A. J. Bard, I. Rubinstein, “Electroanalytical Chemistry”, Dekker, New York, Vol. 22, 2004.
[20] W. Zhao, J. J. Xu, Q. Q. Qiu, H. Y. Chen, Biosens. Bioelectron. 22 (2006) 649.
[21] A. E. Fischer, Y. Show, G. M. Swain, Anal. Chem. 76 (2004) 2553.
[22] Q. Chen, D. M. Gruen, A. R. Krauss, T. D. Corrigan, M. Witek, G. M. Swain, J. Electrochem. Soc. 148 (2001) E44.
[23] M. C. Granger, M. Witek, J. Xu, J. Wang, M. Hupert, A. Hanks, M. D. Koppang, J. E. Butler, G. Lucazeau, M. Mermoux, J. W. Strojek, G. M. Swain, Anal. Chem. 72 (2000) 3793.
[24] A. E. Fischer, M. A. Lowe, G. M. Swain, J. Electrochem. Soc. 154 (2007) K61.
[25] S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A. Curtiss, A. N. Goyette, D. M. Gruen, A. R. Krauss, J. Schlueter, A. Sumant, and P. Zapol, Appl. Phys. Letts. 79 (2001) 10.
[26] Y. V. Pleskov, M. D. Krotova, A. V. Saveliev, V. G. Ralchenko, Diamond Relat. Mater. 16 (2007) 2114.
[27] T. Yano, D. A. Tryk, K. Hashimoto, A. Fujishima, J. Electrochem. Soc. 145 (1998) 1870.
[28] T. Yano, E. Popa, D. A. Tryk, K. Hashimoto, A. Fujishima, J. Electrochem. Soc. 146 (1999) 1081.
[29] F. Bouamrane, A. Tadjeddine, J. E. Butler, R. Tenne, C. L. Clement, J. Electroanal. Chem. 405 (1996) 95.
[30] Z.Y. Wu, T. Yano, D.A. Tryk, K. Hashimoto, A. Fujishima, Chem. Lett. (1998) 503.
[31] J. Xu, Q. Chen, G.M. Swain, Anal. Chem. 70 (1998) 3146.
[32] R. D. Clements, G. M. Swain, J. Electrochem. Soc. 144 (1997) 856.
[33] T. N. Rao, I. Yagi, T. Miwa, D. A. Tryk, A. Fujishima, Anal. Chem. 71 (1999) 2506.
[34] J. J. Lee, B. Miller, X. Shi, R. Kalish, K. A. Wheelerd, J. Electrochem. Soc. 148 (2001) C183.
[35] J. Stotter, Y. Show, S. Wang, G. Swain, Chem. Mater. 17 (2005) 4880.
[36] H. B. Martin, A. Argoitia, J. C. Angus, U. Landau, J. Electrochem. Soc. 146 (1999) 2959.
[37] S. Wang and G. M. Swain, J. Phys. Chem. C 111 (2007) 3986.
[38] M. A. Lowe, A. E. Fischer, G. M. Swain, J. Electrochem. Soc. 153 (2006) B506.
[39] . Farrell, F. J. Martin, H. B. Martin, W. E. O’Grady, P. Natishan, J. Electrochem. Soc. 152 (2005) E14.
[40] Y. V. Pleskov, Y. E. Evstefeeva, M. D. Krotova, V. P. Varnin, I. G. Teremetskaya, J. Electroanal. Chem. 595 (2006) 168.
[41] T. A. Ivandini, R. Sato, Y. Makide, A. Fujishima, Y. Einag, Diamond Relat. Mater. 13 (2004) 2003.
[42] T. A. Ivandini, R. Sato, Y. Makide, A. Fujishima, Y. Einaga, Anal. Chem. 78 (2006) 6291.
[43] T. Watanabe, T. A. Ivandini, Y. Makide, A. Fujishima, Y. Einaga, Anal. Chem. 78 (2006) 7857.
[44] Y. Yamaguchi, Y. Yamanaka, M. Miyamoto, A. Fujishima, K. Honda, J. Electrochem. Soc. 153 (2006) J123.
[45] K. Arihara, C. Terashima, A. Fujishima, J. Electrochem. Soc. 154 (2007) E71.
[46] D. Sopchak, B. Miller, R. Kalish, Y. Avyigal, X. Shi, Electroanal. 14 (2002) 473.
[47] 詹佩璇,神經生物學,合記圖書出版社,2004
[48] 麥麗敏,漫畫神經系統與特殊感覺,合記圖書出版社,2000
[49] K. Sato, J. Y. Jin, T. Takeuchi, T. Miwa, Y. Takekoshi, S. Kanno, S. Kawase, Talanta 53 (2000) 1037.
[50] H. Heli, M. Hajjizadeh, A. Jabbari, A. A. M. Movahedi, Anal. Biochem. 388 (2009) 81.
[51] G. L. Luque, N. F. Ferreyra, G. A. Rivas, Talanta 71 (2007) 1282.
[52] A. S. Arribas, E. Bermejo, M. Chicharro, A. Zapardiel, G. L. Luque, N. F. Ferreyra, G. A. Rivas, Anal. Chim. Acta 577 (2006) 183.
[53] I. G. Casella, T. R. I. Cataldi, A. Guerrieri, E. Desimonib, Anal. Chim. Acta 335 (1996) 217.
[54] J. Labuda, A. Meister, P. Gläser, G. Werner, Fresenius J. Anal. Chem. 360 (1998) 6548.
[55] Q. Yi, W. Huang, W. Yu, L. Li, X. Liu, Electroanalysis 20 (2008) 2016.
[56] Y. Mu, D. Ji, Y. He, Y. Miao, H. L. Wu, Biosens. Bioelectrons. 26 (2011) 2948.
[57] J. F. Huang, Chem. Commun. (2009) 1270.
[58] W. D. Zhang, J. Chen, L. C. Jiang, Microchim. Acta 168 (2010) 259.
[59] S. S. Mahshid, S. Mahshid, L. Yang, A. Dolati, Electrochem. Soc. (2011) 219th ECS Meeting.
[60] D. Rathoda, C. Dickinsonb, D. Egana, E. Dempseya, Sensor. Actuat. B 143 (2010) 547.
[61] L. M. Lu, L. Zhang, F. Li. Qu, H. X. Lu, X. B. Zhang, Z. S. Wu, S. Y. Huan, Q. A. Wang, G. L. Shen, R. Q. Yu, Biosens. Bioelectrons. 25 (2009) 218.
[62] K. E. Toghill, L. Xiao, M. A. Phillips, R. G. Compton, Sensor. Actuat. B 147 (2010) 642.
[63] F. Sun, L. Li, P. Liu, Y. Lian, Electroanalysis 23 (2011) 395.
[64] W. Wang, L. Zhang, S. Tong, X. Li, W. Song, Biosens. Bioelectrons. 25 (2009) 708.
[65] Y. Liua, H. Tengb, H. Houc, T. Youa, Biosens. Bioelectrons 24 (2009) 3329.
[66] E. Reitz, W. Jia, M. Gentile, Y. Wang, Y. Lei, Electroanalysis 20 (2008) 2482.
[67] Y. Myung, D. M. Jang, Y. J. Cho, H. S. Kim, J. Park, J. Phys. Chem. C 113 (2009) 1251.
[68] K. B. Male, S. Hrapovic, Y. Liu, D. Wang, J. H.T. Luong, Anal. Chim. Acta 516 (2004) 35.
[69] R. Barnard, C. F. Randell, F. L. Tye, J. Appl. Electrochem. 10 (1980) 109.
[70] J. Chen, D. H. Bradhurst, S. X. Dou, H. K. Liu, J. Electrochem. Soc. 146 (1999) 3606.
[71] H. Bode, K. Dehmelt, J. Witte, Electrochim. Acta 11 (1966) 1079.
[72] P. Oliva, J. Leonardi, J. F. Laurent, C. Delmas, J. J. Braconnier, M. Figlarz, F. Fievet, A. D. Guibert, J. Power Sources 8 (1982) 229.
[73] R. S. S. Guzman, J. R. Vilche, A. J. Arvia, J. Appl. Electrochem. 8 (1978) 67.
[74] M. Jafarian, F. Forouzandeh, I. Danaee, F. Gobal, M. G. Mahjani, J. Solid-State Electrochem. 13 (2009) 1171.
[75] M. Fleischmann, K. Korinek, D. Pletcher, J. Chem. Soc. Perkin Trans. 2 (1972) 1396.
[76] C. Schonenberger, Z. Vander, M. Henny, C. Schmid, M. Kruger, A. Bachtold, R. Huber, H. Birk, U. Staufer, J. Phys. Chem. B 101 (1997) 5497.
[77] Y. Y. Song, D. Zhang, W. Gao, X. H. Xia, Chem. Eur. J. 11 (2005) 2177.
[78] J. H. Yuan, K. Wang, X. H. Xia, Adv. Funct. Mater. 15 (2005) 803.
[79] S. J. Park, H. K. Boo, T. D. Chung, Anal. Chim. Acta 556 (2006) 46.
[80] M. D. Leo, A. Kuhn, P. Ugo, Electroanalysis 19 (2007) 227.
[81] C. Z. Zhao, C. L. Shao, M.H. Li, K. Jiao, Talanta 71 (2007) 1769.
[82] A. Safavi, N. Maleki, E. Farjami, Biosens. Bioelectrons. 24 (2009) 1655.
[83] L. M. Zhang, L. Qu, F. L. Lu, H. X. Zhang, X. B. Wu, Z. S. Huan, S. Y. Wang, S. Mho, D. C. Johnson, J. Electroanal. Chem. 500 (2001) 524.
[84] L. Huang, S. Xu, S. Zhou, Chem. J. Chinese Universities 6 (1997) 932.
[85] Y. Bai, Y. Sun, C. Sun, Biosens. Bioelectron. 24 (2008) 579.
[86] L. Meng, J. Jin, G. Yang, T. Lu, H. Zhang, C. Cai, Anal. Chem. 81(2009) 7271.
[87] J. Yuan, K. Wang, X. Xia, Adv. Funct. Mater. 15 (2005) 803.
[88] K. E. Toghill, R. G. Compton, Int. J. Electrochem. Sci. 5 (2010) 1246.
[89] S. Raina, W. P. Kang, J. L. Davidson, Diam. Relat. Mater. 17 (2008) 790.
[90] S. Raina, W. P. Kang, J. L. Davidson, Diam. Relat. Mater. 19 (2010) 256.
[91] S. Raina, W. P. Kang, J. L. Davidson, Diam. Relat. Mater. 18 (2009) 718.
[92] S. Raina, W. P. Kang, J. L. Davidson, Diam. Relat. Mater. 18 (2009) 574.
[93] S. Raina, W. P. Kang, J. L. Davidson, Diam. Relat. Mater. 17 (2008) 896.
[94] A. Sen, S. Barizuddin, M. Hossain, L. P. Parada, K. D. Gillis, S. Gangopadhyay,
Biomaterials 30 (2009) 1604.
[95] N.W. Khun, E. Liu, X.T. Zeng, Corro. Sci. 51 (2009) 2158.
[96] N. Menegazzo, M. Kahn, R. Berghauser, W. Waldhauser, B. Mizaikoff, Analyst
136 (2011) 1831.
[97] Q. Hu, M. Hirai, R. K. Joshi, A. Kumar, J. Phys. D: Appl. Phys. 42 (2009) 025301.
[98] F. A. M. Koeck, R. J. Nemanich, Diam. Relat. Mater. 18 (2009) 232.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 19. 葉銀華、柯承恩、蘇裕惠,中小企業財務結構與經營績效之研究,中山管理評論,第8卷第2期,303-323。
2. 19. 葉銀華、柯承恩、蘇裕惠,中小企業財務結構與經營績效之研究,中山管理評論,第8卷第2期,303-323。
3. 19. 葉銀華、柯承恩、蘇裕惠,中小企業財務結構與經營績效之研究,中山管理評論,第8卷第2期,303-323。
4. 8. 吳道生、張國棟,台灣營建產業與能力成熟度(上) -營建廠商評鑑的另一種面向:能力成熟度評鑑,營造天下,2005,第118期,9-17。
5. 8. 吳道生、張國棟,台灣營建產業與能力成熟度(上) -營建廠商評鑑的另一種面向:能力成熟度評鑑,營造天下,2005,第118期,9-17。
6. 8. 吳道生、張國棟,台灣營建產業與能力成熟度(上) -營建廠商評鑑的另一種面向:能力成熟度評鑑,營造天下,2005,第118期,9-17。
7. 7. 李涵茵,國內ESCO經營模式之探討,能源報導,2月號,2007,29-32。
8. 7. 李涵茵,國內ESCO經營模式之探討,能源報導,2月號,2007,29-32。
9. 7. 李涵茵,國內ESCO經營模式之探討,能源報導,2月號,2007,29-32。
10. 6. 李涵茵,日本能源服務業發展概況,能源報導,10月號,2005,34-36。
11. 6. 李涵茵,日本能源服務業發展概況,能源報導,10月號,2005,34-36。
12. 6. 李涵茵,日本能源服務業發展概況,能源報導,10月號,2005,34-36。