跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 01:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝家齊
研究生(外文):Hsieh, Chia-Chi
論文名稱:奈米碳管海綿之製造與特性研究
論文名稱(外文):The Fabrication And Characterization Of Carbon Nanotube Sponges
指導教授:張士欽
指導教授(外文):Chang, Shih-Ching
口試委員:徐文光葉安洲
口試日期:2011-7-25
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:65
中文關鍵詞:奈米碳管海綿冷凍乾燥法
外文關鍵詞:Carbon nanotube spongesfreeze-drying
相關次數:
  • 被引用被引用:1
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此研究中,我們使用了簡易且新穎的冷凍乾燥方法,製造不同孔隙大小 (3~90 μm) 與密度且具有均勻晶胞大小的碳管海綿,而它是一種柔軟且具有彈性之多孔隙結構。奈米碳管經過親水性處理分散在水溶劑之中,並且混和不同比例的高分子(PVA),將此液體在不同凝固速率下結凍,並形成不同粒徑的冰晶,再經過真空抽氣步驟,藉由足夠的低壓昇華除去凝固的溶劑部分,殘留下來的多孔結構是為奈米碳管海綿。其中碳管海棉之晶胞(孔隙)的大小可以藉由冷凍速率與高分子添加量進行控制,強度與剛性可以藉由碳管密度與高分子添加量進行控制。碳管海綿至少要含有3 mg/mL之碳管含量才能形成穩定的結構。
碳管海綿的電阻隨著應變增加其改變值極為敏感,在真實壓縮應變範圍23 % 到69 %之間有5到10倍的電導值變化。碳管海綿具有低的剛性和高電導/壓力的比值,將碳管海綿F801組裝在人工觸覺陣列上,展現其兩點觸覺辨識閥值可以小於1 mm,相較於人體2-3 mm的辨識能力更為敏感。

Carbon nanotube sponges were successfully fabricated by freeze-drying method. The carbon nanotube was made hydrophilic by acid treatment then dispersed in water with PVA (0, 0.1, 1 wt%). The mixture was frozen under different condition to form different sized ice grains. The ice in the frozen solid was removed by sublimation without melting under low pressure that left a structure of carbon nanotube sponge. The cell size of the carbon nanotube sponges can be controlled by freezing condition and the amount of polymer addition. A minimum of 3 mg/mL CNTs was found to be needed to form a stable network structure. The strength and stiffness of the sponge increase with the density of CNTs and the amount of polymer addition.
The MWNT sponges have very low stiffness and large flexibility. The electrical resistance of MWNTs sponge is very sensitive to its strain. About fivefold to tenfold of conductance change was observed in the compressive strain range between 23 and 69 %. Since the MWNT sponges have very low stiffness, high conductance/pressure ratio and excellent flexibility, artificial tactile pressure sensor arrays could be made by an integrated sponge. The two-point discrimination ability of 1 mm thick F801 sponge is proved to be smaller than 1 mm which is much more sensitive than 2-3 mm of ordinary human skin.

Contents
Abstract………………………………………………………………i
摘要……………………………………………………………………ii
致謝……………………………………………………………………iii
Contents………………………………………………………………iv
Chapter 1 Introduction………………………………………………1
Chapter 2 Literature review…………………………………………2
2-1 Introduction of carbon nanotubes……………………………2
2-2 Purification and functionalization of carbon nanotubes.2
2-3 Aerogels……………………………………………………………3
2-4 Methods of making carbon nanotube aerogels………………4
2-5 Pressure sensing technology…………………………………5
Chapter 3 Experimental………………………………………………10
3-1 Materials and equipments………………………………………10
3-2 Preparation of dispersed MWNTs solution…………………11
3-2-1 Purification of MWNTs………………………………………11
3-2-2 Functionalization of MWNTs…………………………………11
3-3 Fabrication of the CNT sponges and the sample designation….…………………………………………………………12
3-4 Electrical and mechanical measurement……………………13
3-5 The tactile test…………………………………………………13
Chapter 4 Results and Discussion…………………………………18
4-1 The freezing of the MWNTs solution and the sponge structure…………………………………………………18
4-2 Cyclic compression test for the sponge……………………21
4-3 The measurement of resistance in cycle compression……22
4-4 Test of tactile array…………………………………………24
Chapter 5 Conclusions……………………………………………………………56
Reference………………………………………………………………58

[1] Xuchun Gui, Anyuan Cao, Jinquan Wei, Hongbian Li, Yi Jia, Zhen Li, Lili Fan, Kunlin Wang, Hongwei Zhu, and Dehai Wu, ACS. NANO., vol. 4., no.4, 2010, “Soft, highly conductive nanotube sponges and composites with controlled compressibility”.
[2] Hongbian Li, Xuchun Gui, Luhui Zhang, Shanshan Wang, Chunyan Ji, Jinquan Wei, Kunlin Wang, Hongwei Zhu, Dehai Wu and Anyuan Cao, , Chemical Communications, 7966–7968, 46, 2010, “Carbon nanotube sponge filters for trapping nanoparticles and dye molecules from water”.
[3] Tarik Bordjiba, Mohamed Mohamedi, and L? H. Dao, Advanced materials, 815–819, 20, 2008, “New Class of Carbon-Nanotube Aerogel Electrodes for Electrochemical Power Sources”.
[4] Yuehe Lin, Xiaoli Cui, Clive H. Yen and Chien M. Wai, Langmuir, 11474-11479, 21, 2005, “PtRu/Carbon Nanotube Nanocomposite Synthesized in Supercritical Fluid: A Novel Electrocatalyst for Direct Methanol Fuel Cells”.
[5] Manikoth M. Shaijumon, Fung Suong Ou, Lijie Ci and Pulickel M. Ajayan, Chemical Communications, 2373–2375, 2008, “Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes”.
[6] John Lehman, Aric Sanders, Leonard Hanssen, Boris Wilthan, Jinan Zeng, Christopher Jensen, Nano Letters, 3261–3266, 10, 2010, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate”.
[7] Mateusz B. Bryning, Daniel E. Milkie, Mohammad F. Islam, Lawrence A. Hough, James M. Kikkawa, and Arjun G. Yodh, Advanced materials, 661–664, 19, 2007, “Carbon Nanotube Aerogels”.
[8] S. Iijima, Nature, 354, 56 ,1991, “Helical microtubules of graphitic carbon”.
[9] Min Ouyang, Jin-Lin Huang, Charles M. Lieber, Accounts of Chemical Research , 1018-1025, 35, 2002, “Fundamental electronic properties and applications of single-walled carbon nanotubes”.
[10] Xiao-Lin Xie, Yiu-Wing Mai, Xing-Ping Zhou. Materials Science and Engineering R ,89–112, 49, 2005, “Dispersion and alignment of carbon nanotubes in polymer matrix: A review”.
[11] M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature, 678–680, 381, 1996, “Exceptionally high Young’s modulus observed for individual carbon nanotubes”.
[12] F. Xu, L. X. Sun, J. Zhang, Y. N. Qi, L. N. Yang, H. Y. Ru, C. Y. Wang , X. Meng, X. F. Lan, Q. Z. Jiao, F. L. Huang, J Therm. Anal. Calorim. ,785–791, 102, 2010, “Thermal stability of carbon nanotubes”
[13] Seunghun Hong, Sung Myung, Nature Nanotechnology, 2, 2007, “A flexible approach to mobility”.
[14] K.B. Shelimov, R.O. Esenaliev, A.G. Rinzler, C.B. Huffman, R.E. Smalley. Chemical Physics Letters, 429-434, 282, 1998, “Purification of single-wall carbon nanotubes by ultrasonically assisted filtration”.
[15] S. Gajewski, H.-E. Maneck, U. Knoll, D. Neubert, I. Dorfel, R. Mach, B. Strau, J.F. Friedrich, Diamond and Related Materials ,12 ,816–820 , 2003, “Purification of single walled carbon nanotubes by thermal gas phase oxidation”.
[16] M. Bystrzejewski, A. Huczko, H. Lange, T. Gemming, B. B?佟hner, M.H. R?刞meli, Journal of Colloid and Interface Science, 138–142, 345, 2010, “Dispersion and diameter separation of multi-wall carbon nanotubes in aqueous solutions”.
[17] Shane D. Bergin, Zhenyu Sun, Philip Streich, James Hamilton, and Jonathan N. Coleman, Journal of Materials Chemistry C., 231–237, 114, 2010, “New Solvents for Nanotubes: Approaching the Dispersibility of Surfactants”.
[18] Bahr, J. L.; Yang, J.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M., Journal of the American Chemical Society, 6536-6542, 123, 2001, “Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode”.
[19] A. Anson Casaos, J.M. Gonza lez Domınguez, E. Terrado, M.T. Martınez, Carbon, 1480 – 1488, 48, 2010, “Surfactant-free assembling of functionalized single-walled carbon nanotube buckypapers”.
[20] Jake Guildford, Ver. 3, 2009, “Aerogel”.
[21] A. C. Pierre and G. M. Pajonk, Chemical Reviews, 4243–4266, 102, 2002, “Chemistry of aerogels and their applications”.
[22] N. Heusing and U. Schubert, Angewandte Chemie Int. Ed., 22–45, 37 1998, “Aerogels-airy materials: chemistry, structure, and properties”.
[23] Luke Joshua Sweetman, Simon Edward Moulton and Gordon George Wallace, Journal of Materials Chemistry, 5417–5422, 18, 2008, “Characterisation of porous freeze dried conducting carbon nanotube–chitosan scaffolds”.
[24] Tamon, H., Hajime Ishizaka, Journal of Colloid and Interface Science, 305-307, 223, 2000, “Influence of gelation temperature and catalysts on the mesoporous structure of resorcinol–formaldehyde aerogels”.
[25] Ya-Li Li, Ian A. Kinloch, Alan H. Windle, vol.304, 9, April, 2004,Science , “Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis”.
[26] Mei Zhang, Shaoli Fang, Anvar A. Zakhidov, Sergey B. Lee, Ali E. Aliev, Christopher D. Williams, Ken R. Atkinson, Ray H. Baughman, , vol.309, 19, August, 2005, Science, “Strong, transparent, multifunctional, carbon nanotube sheets”
[27] J.L. Gurav, A. Venkateswara Rao, Journal of alloys and aompounds, 296–302, 471, 2009, “Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor”.
[28] C.M. Leroy, F. Carn, R. Backov, M. Trinquecoste, P. Delhaes, Carbon, 2307–2320, 45, 2007, “Multiwalled-carbon-nanotube-based carbon foams”.
[29] Brigitte Vigolo, Philippe Poulin, Marcel Lucas, Pascale Launois , and Patrick Bernier, Applied Physics Letters, Vol.81, 7, 2002, “Improved structure and properties of single-wall carbon nanotube spun fibers”.
[30] M.H. Lee, H.R. Nicholls, Mechatronics, 1-31, 9, 1999, “Tactile sensing for mechatronics a state of the art survey”.
[31] Aage R. Moller, 2003, “Sensory systems: anatomy and physiology”.
[32] W. P. Eaton and J. H., Smith. Smart Materials and Structures, 530–539, 6, 1997, “Micromachined pressure sensors: review and recent developments”.
[33] Marco Maggiali, Giorgio Cannata, Perla Maiolino, Giorgio Metta, Marco Randazzo1, Giulio Sandini, Mechatronics, 23 – 25, June, 2008, “Embedded distributed capacitive tactile sensor”
[34] Stefan C. B. Mannsfeld, Benjamin C-K. Tee, Randall M. Stoltenberg, Christopher V. H-H. Chen, Soumendra Barman, Beinn V. O. Muir, Anatoliy N. Sokolov, Colin Reese and Zhenan Bao, Nature Materials, vol.9, October, 2010, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers”.
[35] M.-Y. Cheng, C.-M. Tsao, Y.-Z. Lai, Y.-J. Yang, Sensors and Actuators A , 226–233, 166, 2011, “The development of a highly twistable tactile sensing array with stretchable helical electrodes”
[36] Jonathan Engel, Jack Chen, Zhifang Fan, Chang Liu, Sensors and Actuators A, 50–61, 117, 2005, “Polymer micromachined multimodal tactile sensors”.
[37] George W. Scherer, Journal of Non-Crystalline Solids, 1-25, 155, 1993, “Freezing gels”.
[38] Gerorge “Mechanical metallurgy” SI Metric Ediiton.
[39] T.S. Lia, C.H. Leeb, S.C. Changa, M.F. Linb, Solid State Communications, 451–455, 145, 2008, “Electronic properties of telescoping carbon nanotubes under external fields”.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top