跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 21:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊東翰
研究生(外文):Yang, Tung-Han
論文名稱:溶膠-凝膠法製備p型鋁氮共摻雜氧化鋅鎂薄膜研究
指導教授:吳振名
指導教授(外文):Wu, Jenn-Ming
口試委員:闕郁倫葉東昇
口試日期:2011-6-30
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:95
中文關鍵詞:p型氧化鋅氮摻雜氧化鎂
相關次數:
  • 被引用被引用:0
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
氧化鋅(ZnO),一種Ⅱ-Ⅵ 化合物半導體,其室溫(300K)下導帶與價帶間能隙(bandgap)高達3.37eV,近紫外光能量的能隙,是極具潛力應用於發光二極體、壓電元件、場發射、太陽能電池、光檢測器、全透明電子元件等各式各樣的光電元件材料。目前ZnO面臨最大的問題在於p-type ZnO的製備,因為未摻雜的ZnO本身的缺陷如氧空缺(VO)、間隙鋅(Zni)與背景雜質如氫,造成ZnO本質為n-type半導體,若要轉變為p-type導電性質,則必須透過雜質摻雜。
本研究使用濃膠-凝膠法(Sol-gel method),採用鋁-氮共摻雜(co-doping of Al and N)的方式,在玻璃基板(glass substrate)上,旋轉塗佈(spin-coating)鍍製膜厚控制在250nm左右的p-type ZnO薄膜。除此之外並加入鎂離子(Mg2+),調整Mg2+成分比,鍍製寬能隙p-type MgxZn1-xO薄膜,比較不同Mg成分比(x=0-0.05)薄膜間在微結構、電學與光學性質上的差異。
此外,製作奈米結構的p-n同質接面二極體(nanostructured ZnO p-n homojunction diode),此二極體由p-type ZnO薄膜與n-type ZnO 奈米柱組成,比一般傳統的薄膜型二極體相對具有很大的p-n接面接觸面積,電性量測證實具有典型的p-n整流特性。

目錄
摘要 I
目錄 III
表目錄 VI
圖目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
第二章 文獻回顧 4
2-1 ZnO發展簡介 4
2-2 p-type 摻雜物比較 6
2-3 使用N 為p-type摻雜物 8
2-4 能隙工程 11
第三章 實驗方法 22
3-1 實驗大綱 22
3-2 鍍製p-type Al-N codoped MgxZn1-xO薄膜 22
3-2-1 基板準備: 22
3-2-2 鍍製步驟說明: 23
3-3 製備奈米結構p-n同質接面二極體 23
3-3-1 基板準備: 23
3-3-2 製備步驟說明: 23
3-4 量測儀器 24
第四章 結果與討論 28
4-1 熱處理溫度對於p-type Al-N codoped ZnO的影響 28
4-1-1 前言: 28
4-1-2 實驗結果與討論: 28
4-1-3 結論: 39
4-2 Mg摻雜量對於p-type Al-N codoped Mg1-xZnxO的影響 41
4-2-1 前言: 41
4-2-2 實驗結果與討論: 41
4-2-3 結論: 47
4-3 N摻雜量對於p-type Al-N codoped Mg0.05Zn0.95O的影響 49
4-3-1 前言: 49
4-3-2 實驗結果與討論: 49
4-3-3 結論: 54
4-4 奈米結構的p-n同質接面二極體 55
4-4-1 前言: 55
4-4-2 實驗結果與討論: 56
4-4-3 結論: 58
第五章 結論 86
第六章 參考文獻 88


1. Lim, J. H.; Kang, C. K.; Kim, K. K.; Park, I. K.; Hwang, D. K.; Park, S. J., UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Advanced Materials 2006, 18 (20), 2720.
2. Ryu, Y. R.; Lee, T. S.; Lubguban, J. A.; White, H. W.; Kim, B. J.; Park, Y. S.; Youn, C. J., Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied Physics Letters 2006, 88 (24), 241108.
3. Xu, W. Z.; Ye, Z. Z.; Zeng, Y. J.; Zhu, L. P.; Zhao, B. H.; Jiang, L.; Lu, J. G.; He, H. P.; Zhang, S. B., ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Applied Physics Letters 2006, 88(24), 173506.
4. Wei, Z. P.; Lu, Y. M.; Shen, D. Z.; Zhang, Z. Z.; Yao, B.; Li, B. H.; Zhang, J. Y.; Zhao, D. X.; Fan, X. W.; Tang, Z. K., Room temperature p-n ZnO blue-violet light-emitting diodes. Applied Physics Letters 2007, 90 (4), 042113.
5. Jiao, S. J.; Zhang, Z. Z.; Lu, Y. M.; Shen, D. Z.; Yao, B.; Zhang, J. Y.; Li, B. H.; Zhao, D. X.; Fan, X. W.; Tang, Z. K., ZnO p-n junction light-emitting diodes fabricated on sapphire substrates. Applied Physics Letters 2006, 88 (3), 031911.
6. Kong, X. Y.; Wang, Z. L., Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Letters 2003, 3 (12), 1625.
7. Wang, X. D.; Summers, C. J.; Wang, Z. L., Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Letters 2004, 4 (3), 423.
8. Wang, Z. L., Zinc oxide nanostructures: growth, properties and applications. Journal of Physics-Condensed Matter 2004, 16 (25), 829.
9. Lee, C. J.; Lee, T. J.; Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J., Field emission from well-aligned zinc oxide nanowires grown at low temperature. Applied Physics Letters 2002, 81 (19), 3648.
10. Tseng, Y. K.; Huang, C. J.; Cheng, H. M.; Lin, I. N.; Liu, K. S.; Chen, I. C., Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Advanced Functional Materials 2003, 13 (10), 811.
11. Zhu, Y. W.; Zhang, H. Z.; Sun, X. C.; Feng, S. Q.; Xu, J.; Zhao, Q.; Xiang, B.; Wang, R. M.; Yu, D. P., Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters 2003, 83 (1), 144.
12. Beek, W. J. E.; Wienk, M. M.; Janssen, R. A. J., Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Advanced Materials 2004, 16 (12), 1009.
13. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D., Nanowire dye-sensitized solar cells. Nature Materials 2005, 4 (6), 455.
14. Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R., 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Progress in Photovoltaics 2008, 16 (3), 235.
15. Jin, Y. Z.; Wang, J. P.; Sun, B. Q.; Blakesley, J. C.; Greenham, N. C., Solution-processed ultraviolet photodetedtors based on colloidal ZnO nanoparticles. Nano Letters 2008, 8 (6), 1649.
16. Liang, S.; Sheng, H.; Liu, Y.; Huo, Z.; Lu, Y.; Shen, H., ZnO Schottky ultraviolet photodetectors. Journal of Crystal Growth 2001, 225 (2), 110.
17. Sharma, P.; Sreenivas, K.; Rao, K. V., Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering. Journal of Applied Physics 2003, 93 (7), 3963.
18. Seghier, D.; Gislason, H. P., Shallow and deep donors in n-type ZnO characterized by admittance spectroscopy. Journal of Materials Science-Materials in Electronics 2008, 19 (8), 687.
19. Park, C. H.; Zhang, S. B.; Wei, S. H., Origin of p-type doping difficulty in ZnO: The impurity perspective. Physical Review B 2002, 66 (7), 073202.
20. Dai, L. P.; Deng, H.; Mao, F. Y.; Zang, J. D., The recent advances of research on p-type ZnO thin film. Journal of Materials Science-Materials in Electronics 2008, 19 (8), 727.
21. Ohtomo, A.; Kawasaki, M.; Koida, T.; Masubuchi, K.; Koinuma, H.; Sakurai, Y.; Yoshida, Y.; Yasuda, T.; Segawa, Y., MgxZn1-xO as a II-VI widegap semiconductor alloy. Applied Physics Letters 1998, 72 (19), 2466.
22. Li, X. H.; Xu, H. Y.; Zhang, X. T.; Liu, Y. C.; Sun, J. W.; Lu, Y. M., Local chemical states and thermal stabilities of nitrogen dopants in ZnO film studied by temperature-dependent x-ray photoelectron spectroscopy. Applied Physics Letters 2009, 95 (19), 191903.
23. Zou, C. W.; Yan, X. D.; Han, J.; Chen, R. Q.; Gao, W.; Metson, J., Study of a nitrogen-doped ZnO film with synchrotron radiation. Applied Physics Letters 2009, 94 (17), 171903.
24. Wei, Z. P.; Yao, B.; Zhang, Z. Z.; Lu, Y. M.; Shen, D. Z.; Li, B. H.; Wang, X. H.; Zhang, J. Y.; Zhao, D. X.; Fan, X. W., Formation of p-type MgZnO by nitrogen doping. Applied Physics Letters 2006, 89 (10), 102104.
25. Qiu, M. X.; Ye, Z. Z.; He, H. P.; Zhang, Y. Z.; Gu, X. Q.; Zhu, L. P.; Zhao, B. H., Effect of Mg content on structural, electrical, and optical properties of Li-doped Zn1-xMgxO thin films. Applied Physics Letters 2007, 90 (18), 182116.
26. Gao, J. Y.; Qin, R.; Luo, G. F.; Lu, J.; Leprince-Wang, Y.; Ye, H. Q.; Liao, Z. M.; Zhao, Q.; Yu, D. P., First-principles study of the formation mechanisms of nitrogen molecule in annealed ZnO. Physics Letters A 2010, 374 (34), 3546.
27. Limpijumnong, S.; Li, X. N.; Wei, S. H.; Zhang, S. B., Probing deactivations in Nitrogen doped ZnO by vibrational signatures: A first principles study. Physica B-Condensed Matter 2006, 376, 686.
28. Lin, J. P.; Wu, J. M., The effect of annealing processes on electronic properties of sol-gel derived Al-doped ZnO films. Applied Physics Letters 2008, 92 (13), 134103.
29. Kawazoe, H.; Yasukawa, M.; Hyodo, H.; Kurita, M.; Yanagi, H.; Hosono, H., P-type electrical conduction in transparent thin films of CuAlO2. Nature 1997, 389 (6654), 939.
30. Janotti, A.; Van de Walle, C. G., Oxygen vacancies in ZnO. Applied Physics Letters 2005, 87 (12), 122102.
31. Look, D. C.; Hemsky, J. W.; Sizelove, J. R., Residual native shallow donor in ZnO. Physical Review Letters 1999, 82 (12), 2552.
32. Van de Walle, C. G., Hydrogen as a cause of doping in zinc oxide. Physical Review Letters 2000, 85 (5), 1012.
33. Lee, W. J.; Kang, J.; Chang, K. J., Defect properties and p-type doping efficiency in phosphorus-doped ZnO. Physical Review B 2006, 73 (2), 024117.
34. Limpijumnong, S.; Zhang, S. B.; Wei, S. H.; Park, C. H., Doping by large-size-mismatched impurities: The microscopic origin of arsenic- or antimony-doped p-type zinc oxide. Physical Review Letters 2004, 92 (15), 155504.
35. Ashrafi, A.; Suemune, I.; Kumano, H.; Tanaka, S., Nitrogen-doped p-type ZnO layers prepared with H2O vapor-assisted metalorganic molecular-beam epitaxy. Japanese Journal of Applied Physics Part 2-Letters 2002, 41 (11B), 1281.
36. Look, D. C.; Reynolds, D. C.; Litton, C. W.; Jones, R. L.; Eason, D. B.; Cantwell, G., Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Applied Physics Letters 2002, 81 (10), 1830.
37. Li, X.; Yan, Y.; Gessert, T. A.; Perkins, C. L.; Young, D.; DeHart, C.; Young, M.; Coutts, T. J., Chemical vapor deposition-formed p-type ZnO thin films. Journal of Vacuum Science & Technology A 2003, 21 (4), 1342.
38. Li, X.; Yan, Y.; Gessert, T. A.; DeHart, C.; Perkins, C. L.; Young, D.; Coutts, T. J., p-type ZnO thin films formed by CVD reaction of diethylzinc and NO gas. Electrochemical and Solid State Letters 2003, 6 (4), 56.
39. Xu, W. Z.; Ye, Z. Z.; Zhou, T.; Zhao, B. H.; Zhu, L. P.; Huang, J. Y., Low-pressure MOCVD growth of p-type ZnO thin films by using NO as the dopant source. Journal of Crystal Growth 2004, 265 (1), 133.
40. Zeng, Y. J.; Ye, Z. Z.; Xu, W. Z.; Liu, B.; Che, Y.; Zhu, L. P.; Zhao, B. H., Study on the Hall-effect and photoluminescence of N-doped p-type ZnO thin films. Materials Letters 2007, 61, 41.
41. Lu, Y.; Ye, Z.; Zeng, Y.; Xu, W.; Zhu, L.; Zhao, B., Effects of RF power variation on properties of N-doped p-type ZnO thin films grown by plasma-assisted MOCVD. Optical Materials 2007, 29 (12), 1612.
42. Pan, M.; Nause, J.; Rengarajan, V.; Rondon, R.; Park, E. H.; Ferguson, I. T., Epitaxial growth and characterization of p-type ZnO. J. Electron. Mater. 2007, 36 (4), 457.
43. Lin, C. C.; Chen, S. Y.; Cheng, S. Y.; Lee, H. Y., Properties of nitrogen-implanted p-type ZnO films grown on Si3N4/Si by radio-frequency magnetron sputtering. Applied Physics Letters 2004, 84 (24), 5040.
44. Tu, M. L.; Su, Y. K.; Ma, C. Y., Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering. Journal of Applied Physics 2006, 100 (5), 053705.
45. Yao, B.; Guan, L. X.; Xing, G. Z.; Zhang, Z. Z.; Li, B. H.; Wei, Z. P.; Wang, X. H.; Cong, C. X.; Xie, Y. P.; Lu, Y. M.; Shen, D. Z., P-type conductivity and stability of nitrogen-doped zinc oxide prepared by magnetron sputtering. Journal of Luminescence 2007, 122, 191.
46. Lu, J. G.; Liang, Q. N.; Zhang, Y. Z.; Ye, Z. H.; Fujita, S. Z., Improved p-type conductivity and acceptor states in N-doped ZnO thin films. Journal of Physics D-Applied Physics 2007, 40 (10), 3177.
47. Jung, E. S.; Kim, H. S.; Cho, H. K.; Kim, J. H., The effects of thermal annealing in NH3-ambient on the p-type ZnO films. Superlattices and Microstructures 2007, 42 (1), 62.
48. Chakrabarti, S.; Doggett, B.; O'Haire, R.; McGlynn, E.; Henry, M. O.; Meaney, A.; Mosnier, J. P., Characterization of nitrogen-doped ZnO thin films grown by plasma-assisted pulsed laser deposition on sapphire substrates. Superlattices and Microstructures 2007, 42 (1), 21.
49. Guo, X. L.; Tabata, H.; Kawai, T., p-type conduction in transparent semiconductor ZnO thin films induced by electron cyclotron resonance N2O plasma. Optical Materials 2002, 19 (1), 229.
50. Epurescu, G.; Dinescu, G.; Moldovan, A.; Birjega, R.; Dipietrantonio, F.; Verona, E.; Verardi, P.; Nistor, L. C.; Ghica, C.; Van Tendeloo, G.; Dinescu, A., P-type ZnO thin films grown by RF plasma beam assisted Pulsed Laser Deposition. Superlattices and Microstructures 2007, 42 (1), 79.
51. Ye, Z. Z.; Lu, J. G.; Chen, H. H.; Zhang, Y. Z.; Wang, L.; Zhao, B. H.; Huang, J. Y., Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering. Journal of Crystal Growth 2003, 253 (1), 258.
52. Lu, J. G.; Zhang, Y. Z.; Ye, Z. Z.; Wang, L.; Zhao, B. H.; Huang, J. Y., p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations. Materials Letters 2003, 57 (22), 3311.
53. Nian, H.; Hahn, S. H.; Koo, K. K.; Shin, E. W.; Kim, E. J., Sol-gel derived N-doped ZnO thin films. Materials Letters 2009, 63 (26), 2246.
54. Yamamoto, T.; Katayama-Yoshida, H., Solution using a codoping method to unipolarity for the fabrication of p-type ZnO. Japanese Journal of Applied Physics Part 2-Letters 1999, 38 (2B), 166.
55. Cong, G. W.; Peng, W. Q.; Wei, H. Y.; Han, X. X.; Wu, J. J.; Liu, X. L.; Zhu, Q. S.; Wang, Z. G.; Lu, J. G.; Ye, Z. Z.; Zhu, L. P.; Qian, H. J.; Su, R.; Hong, C. H.; Zhong, J.; Ibrahim, K.; Hu, T. D., Comparison of valence band x-ray photoelectron spectrum between Al-N-codoped and N-doped ZnO films. Applied Physics Letters 2006, 88 (6), 602110.
56. Lu, J. G.; Ye, Z. Z.; Zhuge, F.; Zeng, Y. J.; Zhao, B. H.; Zhu, L. P., p-type conduction in N-Al co-doped ZnO thin films. Applied Physics Letters 2004, 85 (15), 3134.
57. Cao, Y. G.; Miao, L.; Tanemura, S.; Tanemura, M.; Kuno, Y.; Hayashi, Y., Low resistivity p-ZnO films fabricated by sol-gel spin coating. Applied Physics Letters 2006, 88 (25), 251116.
58. Bian, J. M.; Li, X. M.; Gao, X. D.; Yu, W. D.; Chen, L. D., Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis. Applied Physics Letters 2004, 84 (4), 541.
59. Zeng, Y. J.; Ye, Z. Z.; Lu, J. G.; Zhu, L. P.; Li, D. Y.; Zhao, B. H.; Huang, J. Y., Effects of Al content on properties of Al-N codoped ZnO films. Applied Surface Science 2005, 249 (1), 203.
60. Chen, S. W.; Wu, J. M., Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method. Acta Materialia 2011, 59 (2), 841.
61. Chen, S. W.; Lee, C. C.; Chen, M. T.; Wu, J. M., Synthesis of BiFeO3/ZnO core-shell hetero-structures using ZnO nanorod positive templates. Nanotechnology 2011, 22 (11), 115605.
62. Sun, J. W.; Lu, Y. M.; Liu, Y. C.; Shen, D. Z.; Zhang, Z. Z.; Yao, B.; Li, B. H.; Zhang, J. Y.; Zhao, D. X.; Fan, X. W., Nitrogen-related recombination mechanisms in p-type ZnO films grown by plasma-assisted molecular beam epitaxy. Journal of Applied Physics 2007, 102 (4), 043522.
63. Yamauchi, S.; Goto, Y.; Hariu, T., Photoluminescence studies of undoped and nitrogen-doped ZnO layers grown by plasma-assisted epitaxy. Journal of Crystal Growth 2004, 260 (1), 1.
64. Perkins, C. L.; Lee, S. H.; Li, X. N.; Asher, S. E.; Coutts, T. J., Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy. Journal of Applied Physics 2005, 97 (3), 034907.
65. Tang, K.; Gu, S. L.; Zhu, S. M.; Liu, J. G.; Chen, H.; Ye, J. D.; Zhang, R.; Zheng, Y. D., Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO. Applied Physics Letters 2009, 95 (19), 192106.
66. Ban, M.; Hasegawa, T.; Goto, A.; Dake, Y.; Kakudate, Y., Deposition of carbon nitride films by an electron-beam-excited plasma sputtering method. Surface & Coatings Technology 2003, 169, 332.
67. Li, Y. F.; Yao, B.; Lu, Y. M.; Wei, Z. P.; Gai, Y. Q.; Zheng, C. J.; Zhang, Z. Z.; Li, B. H.; Shen, D. Z.; Fan, X. W.; Tang, Z. K., Realization of p-type conduction in undoped MgxZn1-xO thin films by controlling Mg content. Applied Physics Letters 2007, 91 (23), 232115.
68. Yao, B.; Shen, D. Z.; Zhang, Z. Z.; Wang, X. H.; Wei, Z. P.; Li, B. H.; Lv, Y. M.; Fan, X. W.; Guan, L. X.; Xing, G. Z.; Cong, C. X.; Xie, Y. P., Effects of nitrogen doping and illumination on lattice constants and conductivity behavior of zinc oxide grown by magnetron sputtering. Journal of Applied Physics 2006, 99 (12), 123510.
69. Yan, Y. F.; Zhang, S. B.; Pantelides, S. T., Control of doping by impurity chemical potentials: Predictions for p-type ZnO. Physical Review Letters 2001, 86 (25), 5723.
70. Chen, M.; Wang, X.; Yu, Y. H.; Pei, Z. L.; Bai, X. D.; Sun, C.; Huang, R. F.; Wen, L. S., X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Applied Surface Science 2000, 158 (1), 134.
71. Islam, M. N.; Ghosh, T. B.; Chopra, K. L.; Acharya, H. N., XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films 1996, 280 (1), 20.
72. Lai, L. W.; Lee, C. T., Investigation of optical and electrical properties of ZnO thin films. Mater. Chem. Phys. 2008, 110 (2), 393.
73. Ohki, A.; Shibata, N.; Ando, K.; Katsui, A., HIGH-CONCENTRATION NITROGEN DOPING IN MOVPE GROWN ZNSE. Journal of Crystal Growth 1990, 99 (1), 413.
74. Zhang, B. Y.; Yao, B.; Li, Y. F.; Zhang, Z. Z.; Li, B. H.; Shan, C. X.; Zhao, D. X.; Shen, D. Z., Investigation on the formation mechanism of p-type Li-N dual-doped ZnO. Applied Physics Letters 2010, 97 (22), 222101.
75. Park, W. I.; Yi, G. C., Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Advanced Materials 2004, 16 (1), 87.
76. Nadarajah, A.; Word, R. C.; Meiss, J.; Konenkamp, R., Flexible inorganic nanowire light-emitting diode. Nano Letters 2008, 8 (2), 534.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top