跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/25 02:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王鼎翔
研究生(外文):Wang, Ding-Hsiang
論文名稱:插入層銅於氧化鎂型元件電阻式非揮發記憶體特性之研究
論文名稱(外文):Resistive Switching in MgO-based Devices with copper insertion for Nonvolatile Memory
指導教授:賴志煌
指導教授(外文):Lai, Chih-Huang
口試委員:金重勳蔡佳霖賴志煌
口試日期:2011-6-27
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:79
中文關鍵詞:電阻記憶體銅奈米晶體氧化鎂非極性阻值轉換
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電阻式記憶體元件由於製程容易、結構簡單以及卓越的性能表現,在近年來受到廣大的矚目,並渴望成為下一世代非揮發性記憶體發展的主流之一。電阻式記憶體阻值轉換主要是由燈絲傳導路徑的形成與斷裂所產生。然而,在絕緣層中燈絲傳導路徑將會隨機形成,使元件阻轉轉換行為較不穩定。因此,如何有效控制燈絲的形成,使阻值轉換表現穩定,便成為電阻式記憶體元件研究的課題。
本實驗藉由插入不同厚度的銅於氧化鎂絕緣層內,試圖改善元件阻值轉換表現。跟不含銅的氧化鎂元件相比,當插入厚度5nm的銅,其電性表現仍然具有非極性操作的優勢。並且,在阻值轉換上不需要經過初始化過程。除此之外,阻值轉換時工作電壓分佈較具一致性,操作能量也大幅下降許多。經由電性分析,元件阻值轉換主要是由燈絲傳導路徑的形成與斷裂所導致,結合SIMS縱深分佈、XPS分析與變溫量測的結果,推測燈絲傳導路徑主要是由金屬鎂與一小部份的金屬銅所組成。利用TEM分析,可以發現5nm厚度的銅插入在絕緣層內,將會結成球狀,形成銅奈米晶體。由於銅奈米晶體的產生,在外加電場時,這些區域會造成電場集中,提供燈絲傳導路徑一個簡易的生成位置,藉由控制燈絲路徑的生
成位置,元件能夠具有較穩定的阻值轉換行為。最後藉由電性傳導機制的探討,在高阻態時漏電流傳導,跟不含銅的氧化鎂元件相比,電子傳導會從Schottky emission轉換形成Poole-Frenkel emission,由於銅在絕緣層內部將成為電子補陷中心的位置,因此,電子躍遷只需較少的能量即可激發至絕緣層的導帶,導致阻值轉換產生時所需的等效電場大幅下降。

In this paper, the resistive switching characteristics of MgO-based with a thin Cu insertion layer are reported in the Pt/MgO/Pt memory devices by ion beam deposition. With fixed thickness of dielectric layer sandwiched in Pt electrodes, we alter the thickness of the copper insertion and select the best electrical properties among them. It is found that besides the distinct reduction in memory switching parameters in SET and RESET voltages, an improvement in the stability of their dispersions were also achieved. The effects of Cu insertion layer on improving the resistive switching properties are analyzed by electrical measurements, Secondary Ion Mass Spectroscopy (SIMS), X-ray photoelectron spectroscopy (XPS), temperature dependence of resistance, and transmission electron microscopy (TEM). Additionally, on the comparison of switching mechanism in the MgO memory device with and without Cu nanocrystal embedded, the dominating conduction mechanism in low resistance state between them is the same; however, the dominating conduction mechanism in high resistance state is Poole-Frenkel emission and shottky emission, respectively, consisting with Cu atoms as defect trapping sites.
目錄
摘要 I
Abstract II
誌謝 III
第一章 序論與研究動機 1
1.1 簡介 1
1.2 研究動機 2
第二章 文獻回顧 4
2.1 先進非揮發性記憶體簡介 4
2.1.1 電阻式記憶體 5
2.1.2 電阻轉換現象 6
2.1.3 初始化過程 8
2.1.4 電阻式記憶體的要求 10
2.2 阻值轉換機制 12
2.2.1燈絲模型於單極阻值轉換 12
2.2.2燈絲模型於雙極阻值轉換 18
2.2.3電氣水龍頭模型於非極性阻值轉換 21
2.3 漏電流傳導機制之簡介 24
2.4 氧化鎂簡介 29
2.5 改善阻值轉換行為的電性表現 30
第三章 實驗設備與分析儀器 32
3.1 實驗流程 33
3.2 試片製備 34
3.2.1 磁控濺鍍系統 36
3.2.2 離子槍濺鍍系統 37
3.3 結構特性 38
3.3.1 X-光繞射儀 (X-ray Diffractometer, XRD) 38
3.3.2 原子力探針顯微鏡 (Atomic Force Microscopy, AFM) 39
3.4電性量測 40
3.5 材料分析 41
3.5.1 二次離子質譜儀 (Secondary Ion Mass Spectrometer, SIMS) 41
3.5.2 化學分析電子術 (Electron Spectroscopy for Chemical analysis, ESCA) 42
3.5.3 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 43
3.5.5 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 44
第四章 實驗結果與討論 47
4.1 MgO記憶體電性表現 47
4.2 插入不同厚度的Cu金屬層對於電性的影響與探討 50
4.3 適當厚度插入層Cu金屬於MgO記憶體元件 54
4.3.1非極性阻值轉換 54
4.3.2 燈絲傳導路徑 59
4.3.3 金屬燈絲傳導路徑 62
4.3.4 阻值轉換傳導機制 73
第五章 結論 78
第六章 參考文獻 79


[1] 簡昭欣、呂正傑、陳志遠、張茂男、許世傑、趙天生,“先進記憶體簡介, ” 國研科技創刊號.
[2] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai Appl. Phys. Lett. 92, 022110 (2008).
[3] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer Appl. Phys. Lett, 77, 139 (2000).
[4] L. P. Ma, J. Liu, and Y. Yang, Appl. Phys. Lett. 80, 16 (2002).
[5] Y. C. YANG, F. PAN, Q. Liu, M. Liu, and F. Zeng, IEEE Electron Device Lett, 29, 434 (2008).
[6] M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S. E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I. K. Yoo, D. H. Seo, X. S. Li, J. B. Park, J. H. Lee, and Y. Park, Nano Lett. 9, 1476 (2009).
[7] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, and B. Yu, Appl. Phys. Lett. 92, 232112 (2008).
[8] T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, Appl. Phys. Lett. 86, 012107 (2005).
[9] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, Nano Lett. 9, 1636 (2009).
[10] R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
[11] Y. C. Yang, F. Pan, F. Zeng, and Ming Liu J. Appl. Phys. 106,123705 (2009).
[12] Hsin-Hung Huang, Wen-Chieh Shih, and Chih-Huang Lai, Appl. Phys. Lett. 96, 193505 (2010).
[13] C. Schindler, M. Weides, M. N. Kozicki, R. Waser Appl. Phys. Lett. 92, 122910 (2008).
[14] Q. Liu, Shibing Long, Wei Wang, Sansiri Tanachutiwat, Yingtao Li, Qin Wang Manhong Zhang, Zongliang Huo, Junning Chen, and Ming Liu, IEEE Electron Device Lett. 31, 1299 (2010).
[15] J. H. Yoon, K. M. KIM, M. H. Lee, S. K. Kim, G. H. Kim, S. J. Song, J. Y. Seok, and C. S. Hwang, Appl. Phys. Lett. 97, 232904 (2010).
[16] C. W. Cheng, Y. C. Tseng, T. B. Wu, L. J. Choi, J. Mater. Res. 19, 1043 (2004)
[17] T. W. Hickmott, J. Appl. Phys. 33, 2669 (1962).
[18] J. F. Gibbons and W. E. Beadle, Solid-State Electron. 7, 785 (1964).
[19] W. R. Hiatt and T. W. Hickmott, Appl. Phys. Lett. 6, 106 (1965).
[20] R. W. Brander, D. R. Lamb, and P. C. Rundle, Br. J. Appl. Phys. 18, 23 (1967).
[21] F. Argall, Solid-State Electron. 11, 535 (1968).
[22] A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura, Nature 388, 50.
[23] W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, Int. Electron Devices Meet. 2002, 193.
[24] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung, and J. T. Moon, Int. Electron Devices Meet. 2004, 587.
[25] A. Sawa, Mater. Today 11, 28 (2008).
[26] S. C. Chae, J. S. Lee, S. Kim, S. B. Lee, S. H. Chang, C. Liu, B. Kahng, H. Shin, D. W. Kim, C. U. Jung, S. Seo, M. J. Lee, and T. W. Noh, Adv. Mater. 20, 1154 (2008).
[27] S. S. Sheu, P. C. Chiang, W. P. Lin, H. Y. Lee, P. S. Chen, Y. S. Chen, T. Y. Wu, F. T. Chen, K. L. Su, M. J. Kao, K. H. Cheng, and M. J. Tsai, Symposium on VLSI Circuits 2009, 82.
[28] C. H. Cheng, Albert Chin, and F. S. Yeh, Symposium on VLSI Circuits 2010, 85.
[29] S. Seo, M. J. Lee, D. H. Seo, E, J. Jeoung, D.-S. Suh, Y. S. Joung, and I. K. Yoo, Appl. Phys. Lett. 85, 23 (2004)
[30] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang, Appl. Phys. Lett. 86, 262907 (2005).
[31] J. Y. Son and Y. H. Shin, Appl. Phys. Lett. 92, 222106 (2008).
[32] M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S. E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I. K. Yoo, D. H. Seo, X. S. Li, J. B. Park, J. H. Lee, and Y. Park, Nano Lett. 9, 1476 (2009).
[33] Xin. Guo, and Christina Schindler, Appl. Phys. Lett. 91, 133513 (2007).
[34] C. Schindler, M. Meier, R. Waser, M. N. Kozicki, L. A. Akers, Proc. IEEE International Symposium on Circuits and Systems (ISCAC). 1998, 3, 33.
[35] N. Xu, B. Gao, L. F. Liu, Bing Sung, X. Y. Liu, R.Q. Han, J. F. Kang, and B. Yu Symposium on VLSI Circuits 2008, 100.
[36] I. H. Inoue, S. Yasuda, H. Akinaga, and H. Takagi, Phys. Rev. B 77, 035105 (2008)
[37] 李雅明 “固態電子學” 全華科技圖書股份有限公司 (1995)
[38] L. W. Feng, C. Y. Chang, Y. F. Chang, T. C, Chang, S. Y. Wang, S. C. Chen, C. C. Lin, S. C. Chen, and P. W. Chiang, Appl. Phys. Lett. 96, 222108 (2010).
[39] Qi. Liu, Shibing Long, Hangbing Lv, Wei Wang, Jiebin Niu, Zongliang Huo, Junning Chen, and Ming Liu, ACS NANO, 4, 6162 (2010).
[40] C. W. Yuan, Cosima. N. Boswell, S. J. Shin, C. Y. Liao, J. Guzman, J. W. Ager lll, E. E. Haller, and D. C. Chrzan, Appl. Phys. Lett. 95, 083120 (2009).
[41] H. H. Huang, C. A. Yang, P. H. Huang, C. H. Lai, T. S. Chin, H. E. Huang, H. Y. Bor, and R. T. Huang, J. Appl. Phys. 101, 09H116 (2007).
[42] P. Rénucci, L. Gaudart, J. P. Pétrakian, and D. Roux, Thin Solid Films 130, 75 (1985).
[43] Bid. A, Bora A and Raychaudhuri A K Phys. Rev. B 74, 035426 (2006).
[44] D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Lee, G.-S. Park, B. Lee, S. Han, M, Kim, and C. S, Hwang, Nat. Nanotechnol. 5, 148 (2010).
[45] R. Benedek, M. Minkoff, and L. H. Yang, Phys. Rev. B. 54, 7697 (1996).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top