[1] T. M. Tritt, “Holey and unholey semiconductors”, Science, Vol. 283, pp.804-805, 1999.
[2] D. M. Rowe, CRC handbook of thermoelectrics, Boca Raton, CRC Press Inc. ,FL, 1995. (ISBN: 0849301467).
[3] P. A. Childs and C. C. C. Leung, “A one-dimensional solution of the boltzmann transport equation including electron–electron interactions”, J. Appl. Phys., Vol. 79, pp.222-227, 1996.
[4] L. H. Shi, D. L. Yao, G. Zhang, and B. W. Li, “Size dependent thermoelectric properties of silicon nanowires”, Appl. Phys. Lett., Vol. 95, pp. 063102-1-063102-3, 2009.
[5] P. Pichanusakorn, P. Bandaru, “Nanostructured thermoelectrics”, Materials Science and Engineering R, Vol. 67, pp. 19-63, 2010.
[6] S. Minomura, H. G. Drickamer, “Pressure induced phase transitions in silicon, germanium and some III-V compounds”, J. Phys. Chem. Solid, Vol. 23, pp. 451-456, 1962.
[7] J. C. Jamieson, “Crystal structures at high pressure of metallic modifications of silicon and germanium”, Science, Vol. 139, pp. 762-764, 1963.
[8] M. T. Yin, M. L. Cohen, “Microscopic theory of the phase transformation and lattice dynamics of Si”, Phys. Rev. letters, Vol. 45, No. 12, 1980.
[9] H. K. Poswal, N. Garg, S. M. Sharma, E. Busetto, S. K. Sikka, G. Gundiah, F. L. Deepak and C. N. Rao, “Pressure-induced structural phase transformations in silicon nanowires”, J. Nanosci. Nanotechnol., Vol. 5, pp. 729-732, 2005.
[10] V. V. Shchennikov Jr, S. V. Ovsyannikov, V. V. Shchenniko, N. A. Shaidarova, A. Misiuk, S. V. Smirnov and D. Yang, “Variations of high-pressure thermoelectric and mechanical properties of Si single crystals under doping with n and p–t pre-treatment”, Material Science and Engineering A, Vol. 462, pp. 347-350, 2007.
[11] P. B. Sorokin, P. V. Avramov, V. A. Demin, et al., “Metallic beta-phase silicon nanowires: structure and electronic properties”, Jounal of Experimental and Theoretical Physics Letters, Vol. 92, No. 5, 2010.
[12] H. J. Goldsmd, R. W. Douglas, “The use of semiconductors in thermoelectric refrigeration”, Br. J. Appl. Phys. Vol. 5, No. 11, 1954.
[13] M. C. Steele, F. D. Rosi, ”Thermal conductivity and thermoelectric power of germanium-silicon alloys”, J. Appl. Phys. Vol. 29, pp. 1517-1520, 1958.
[14] B. Abeles, D. S. Beers and G. D. Cody, et al., “Thermal conductivity of Ge-Si alloys at high temperatures”, Phys. Rev., Vol. 125, pp. 44–46, 1962.
[15] D. M. Rowe, C. M. Bhandari, Modern thermoelectrics, Prentice Hall, 1983. (ISBN-10: 0835945936).
[16] G. A. Slack, M. A. Hussain, ”The maximum possible conversion efficiency of silicon‐germanium thermoelectric generators”, J. Appl. Phys., Vol. 70, pp. 2694-2718, 1991.
[17] L. D. Hicks, M. S. Dresselhaus, ”Effect of quantum-well structures on the thermoelectric figure of merit”, Phys. Rev. B, Vol. 47, pp. 12727–12731, 1993.
[18] L. D. Hicks, M. S. Dresselhaus, ”Thermoelectric figure of merit of a one-dimensional conductor”, Phys. Rev. B, Vol. 47, pp. 16631–16634, 1993.
[19] Y. S. Touloukian, Thermal conductivity: metallic elements and alloys, thermophysical properties of matter Vol. 1339, Springer, 1971, (ISBN-10:0306670216).
[20] L. Weber and E. Gmelin, ”Transport properties of silicon”, Appl. Phys. A, Vol. 53, pp. 136–140, 1991.
[21] A. Majumdar, P. D. Yang, A. I. Hochbaum, R. D. Delgado, W. Liang, C. Garnett, R. Chen and M. Najarian, “Enhanced thermoelectric performance of rough silicon nanowires”, Nature Vol. 451, 2008,
[22] J. T. Kheli, J. K. Yu, W. A. Goddard III, J. R. Heath, A. I. Boukai and Y. Bunimovich, “Silicon nanowires as efficient thermoelectric materials”, Nature, Vol. 451, pp.168-171, 2008.
[23] G. S. Nolas, J. Sharp, H. J. Goldsmid, Thermoelectrics-basic principles and new materials developments, Springer, 2001, (ISBN:354041245X).
[24] I. N. Levine, Quantum chemistry 6th ed., Prentice Hall, 2008, (ISBN: 0132358506).
[25] 邱創斌(洪哲文指導), “量子力學與分子動力分析酵素生物燃料電池性能影響因子”, 國立清華大學動力機械系博士論文, 1/2010.[26] D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism”, Physical Review B, Vol.41, pp.7892-7895, 1990.
[27] 蔡岳璁(洪哲文指導), “計算量子力學於CO在直接甲醇燃料電池觸媒之毒化研究”, 國立清華大學動力機械系碩士論文, 6/2006.[28] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.
[29] S. Baroni, A. D. Corso, S. Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, A. Kokalj, PWscf, Trieste, Italy, 2002.
[30] L. Reggiani, Hot electron transport in semiconductors, topics in Physics, Springer, 1985, (ISBN-10: 0387133216).
[31] http://www.ioffe.ru/SVA/NSM//Semicond/Si/electric.html
[32] R. D. Meo, A. D. Corso and P. Giannozzi, et al., “Calculation of phonon dispersion on the grid using quantum espresso”, Trieste, Italy, 2008.
[33] J. Zou and A. Balandin, “Phonon heat conduction in a semiconductor nanowire”, Journal of Applied Physics, Vol. 89, No.5, 2001.
[34] Y. Zhang, J. X. Cao and Y. Xiao, et al., “Phonon spectrum and specific heat of silicon nanowires”, Journal of Applied Physics, Vol. 102, 104303, 2007.
[35] B. D. Kong, S. Paul and M. B. N. William and K. W. Kim, “First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene”, Phys. Rev. B, Vol. 80, 033406, 2009.
[36] T. L. Chan, C. V. Ciobanu and F. C. Chuang, et al., “Magic structure of h-passivated <110> silicon nanowires”, Nano Letters, Vol. 6, No.2, pp. 277-281, 2006.
[37] http://en.wikipedia.org/wiki/BFGS_method
[38] R. W. Godby, M. Schluter, ”Accurate exchange-correlation potential for silicon and its discontinuity on addition of an electron”, Physical Review Letter, Vol. 56, pp. 2415-2418, 1986.
[39] N. W. Ashcroft, N. D. Mermin, Solid state physics, Holt, Rinehart and Winston, 1976, (ISBN:0030493463).
[40] T. Vo, A. J. Williamson, et al, “First principles simulations of the structural and electronic properties of silicon nanowires”, Physical Review B, Vol.74, 045116, 2006.
[41] H. Peelaers, B. Partoens and F. M. Peeters, “Phonon band structure of si nanowires: a stability analysis”, Nano Letters, Vol. 9, No.1, pp. 107-111, 2009.
[42] M. Menon, E. Richter, and K. R. Subbaswamy, “Structural and vibrational properties of si clathrates in a generalized tight-binding molecular-dynamics scheme”, Physical Review B, Vol. 56, No. 19, pp. 12 290-12 295, 1997.
[43] K. J. Suthar, J. Patten and L. Dong, “Estimation of temperature distribution in silicon during micro laser assisted machining”, ASME 2008 International Manufacturing Science and Engineering Conference Vol. 2, pp. 301-309, 2008.