|
[1] http://www.eecs.berkeley.edu/ [2] http://www.akustica.com [3] H. Baltes, O. Brand,A. Hierlemann, D. Lange, and C. Haleitner, “CMOS-present and future,” IEEE International Conference on Micro Electro Mechanical System, Las Vegas, NV., Jan., pp. 459-466, 2002. [4] H. Baltes, O. Brand, G. K. Fedder, C. Hierold, J. Korvink, and O. Tabata, CMOS MEMS: Advanced Micro and Nanosystems, Vol. 2 John Wiley & Sons Inc, Weinheim, Germany, 2005. [5] http://www.analog.com [6] G.K. Fedder, “CMOS-based sensors,”IEEE Sensors Conference, Irvine, CA,Oct., pp. 125-128, 2005. [7] http://www.cic.org.tw [8] H. Seidel, U. Fritsch, R. Gottinger, and J. Schalk, “A piezoresistive silicon accelerometer with monolithically integrated CMOS-circuitry,” International Conference on Solid-state Sensors and Actuators and Eurosensors IX., Stockholm , Sweden, June, pp. 597-600, 1995. [9] A. Partridge, A. E. Rice, and T. W. Kenny, “New thin film epitaxial polysilicon encapsulation for piezoresistive accelerometers,” MEMS 01’, Interlaken, Switzerland, Jan., pp. 54-59, 2001. [10] Y. Nemirovsky, A. Nemirovsky, P. Muralt, and N. Setter, “Design of novel thin-film piezoelectric accelerometer,” Sensors and Actuators A: Physical, 56, pp. 239-249, 1996. [11] R. de Reus, J. O. Gullov, and P. R. Scheeper, “Fabrication and characterization of a piezoelectric accelerometer,” J. Micromech. Microeng., 9, pp. 123-126, 1999. [12] F. Mailly, A. Martinez, A. Giani, F. Pascal-Delannoy, and A. Boyer, “Design of a micromachined thermal accelerometer: thermal simulation and experimental results,” Microelectronics Journal, 34, pp.275-280 , 2003. [13] A. M. Hung, J. Jones, E. Czyzewska, J. Chen, and B. Woods, “Micromachined accelerometer based on convection heat transfer,” MEMS 98’, Heidelberg, Germany, Jan., pp. 627-630, 1998. [14] H. Xie, and G. K. Fedder, “A CMOS z-axis capacitive accelerometer with comb-finger sensing,” MEMS ‘00, Miyazaki, Japan, Jan., pp. 496-501, 2000. [15] H. Xie, G. K. Fedder, Z. Pan, and W. Frey, “Design and fabrication of an integrated CMOS-MEMS 3-axis accelerometer,” Nanotech, 2, pp. 420-423, 2003. [16] CICeNEWS, 75,Jan., 2007. [17] J. Chae, H. Kulah, and K. Najafi “A hybrid silicon-on-glass (SOG) lateral micro-accelerometer with CMOS readout circuitry,” MEMS 02’, Las Vegas, USA, Jan., pp. 623-626, 2002. [18] N. Yazdi, and K. Najafi, “An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process,” Journal of Microelectromechanical Systems, 9, pp. 544-550, 2000. [19] B. Vakili, R. Abdolvand, and F. Ayazi “Sub-micro-gravity capacitive SOI microaccelerometers,” International Conference on Solid-state Sensors, Actuators and Microsystems, Seol, Korea, June, pp. 515-518, 2005. [20] H. Xie, and G. K. Fedder, “Vertical comb-finger capacitive actuation and sensing for CMOS-MEMS,” Sensors and Actuators A: Physical, 95, pp. 212-221, 2002. [21] H. Lakdawala, and G. K. Fedder, “Temperature stabilization of CMOS capacitive accelerometers,” Journal of Micromechanics and Microengineering, 14, pp. 559-566, 2004.
[22] H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel, and G. K. Fedder, “Post-CMOS processing for high-aspect ratio integrated silicon microstructure,” Journal of Micromechanics and Microengineering, 11, pp. 93-101, 2002. [23] Y. J. Huang, T. Li Chang, H. Pwu Chou, “Study of symmetric microstructures for CMOS multilayer residual stress” Sensors and Actuators A: Physical, 150, pp. 237-242, 2009 [24] H. Lakdawala, and G. K. Fedder, “Analysis of temperature-dependent residual stress gradients in CMOS micromachined structures,” International Conference on Solid State Sensors and Actuators, Sendai, Japan, June, pp.526-529, 1999. [25] S. Iyer, H. Lakdawala, G. K. Fedder, and T. Mukherjee, “Macromodeling temperature-dependent curl in CMOS micromachined beams,” International Conference on Modeling and Simulation of Microsystems Semiconductors, Sensors and Actuators, Hilton Head Island, USA, May, pp. 81-91, 2001. [26] S. Iyer, H. Lakdawala, G. K. Fedder, and T. Mukherjee, “Modeling methodology for CMOS-MEMS electrostatic comb,” in Proc, Design, Test, Integration and Packaginf of MEMS/MOEMS, Cannes, Paris, May, pp.114-125, 2002. [27] J. M. Tsai, and G. K. Fedder, ”Mechanical noise-limited CMOS-MEMS accelerometers,” in Proc. IEEE MEMS, Miami, USA, Jan., pp.630-633, 2005. [28] H. Luo, G. K. Fedder, and L. R. Carley, “An elastically gimbaled z-axis CMOS-MEMS gyroscope,” in CD Proc. International Symposium on Smart Structure and Microstructure, Hong Kong, Oct., pp. 1-6, 2000. [29] C. M. Sun, C. W. Wang, and W. Fang, “On the sensitivity improvement of CMOS capacitive accelerometer,” Sensors and Actuators A: Physical, 141, pp. 347-352, 2008.
[30] M. H. Tsai, C. M. Sun, Y. C. Liu, C. W. Wang, and W. Fang, “Design and application of metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors,” Journal of Micromechanics and Microengineering, 19, pp. 1317-1324, 2009. [31] C. M. Sun, M. H. Tsai, Y. C. Liu, and W. Fang, “Implementation of a monolithic single proof-mass tri-axis accelerometer using CMOS-MEMS Technique,” IEEE Transactions on Electron Devices, 57, pp. 1670-1679, 2010. [32] P. E. Allen , and D. R. Holberg, CMOS Analog Circuit Design, 2nd Ed., Oxford University Press, USA, 2002. [33] Taiwan Semiconductor Manufacturing Company, TSMC 0.35um mixed signal 2P4M polyside 3.3V/5V spice model, ver. 2.7, 2007. [34] http://www.intel.com/
|