跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 07:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳維傑
研究生(外文):Chen, Wei-Chieh
論文名稱:降低結構變形量CMOS-MEMS電容式加速度計之設計與實現
論文名稱(外文):Design and Implementation of Reduced Structure Deflection CMOS-MEMS Capacitive Accelerometer
指導教授:葉銘泉葉銘泉引用關係
指導教授(外文):Yip, Ming-Chuen
口試委員:方維倫葉維謦葉銘泉
口試日期:2011-7-12
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:80
中文關鍵詞:CMOS-MEMS全差分多晶矽翹曲量場氧化矽
外文關鍵詞:CMOS-MEMSfully-differentialpolysilicondeflectionfield oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用TSMC 0.35um Mixed Signal 2P4M Polycide製程並搭配後製程,設計開發一個降低結構變形量CMOS-MEMS全差分電容式加速度計。以CMOS-MEMS製作的加速度計,一般都會受到殘餘應力影響,有嚴重的翹曲現象,本研究欲藉由降低殘餘應力的方式,來降低結構降曲量,最大特色為提出預先在結構最下方內埋多晶矽層,使用傳統乾蝕刻加速度計一樣的製程方式,並於製程最後將其蝕刻去除,連帶去除多晶矽下方殘留應力最大的場氧化矽層(Field oxide, FOX),以降低結構翹曲量,整體元件性能整理如下:(1)CMOS-MEMS技術,單晶整合機械結構與感測電路,(2)全差分感測架構,可以放大感測訊號並消除共模雜訊,(3)利用蝕刻掉下方多晶矽層,降低結構翹曲量。
This study utilize TSMC 0.35um Mixed Signal 2P4M Polycide process and post process to design and fabricate a reduced structure deflection capacitive type fully differential CMOS-MEMS accelerometer. In general, accelerometer fabricated with CMOS-MEMS process face issue of severe deflection due to residual stress. The merit of this study is to etch away polysilicon which is embedded in the bottom part of structure at the end of process, which is the same as traditional dry etching process. Field oxide(FOX), which contribute highest level of residual stress, is then be removed simultaneously. Deflection of structure can be reduced thereof. Overall characterization of the device is: (1) integrate MEMS and IC monolithically with CMOS-MEMS technique, (2) amplify sensing signal and eliminate common mode noise through fully differential sensing, and (3) etch away polysilicon under the structure to reduce deflection.
目錄
摘要.............................................................................................................I
Abstract .................................................................................................. II
目錄.........................................................................................................III
圖目錄......................................................................................................V
表目錄..................................................................................................... IX
符號表.......................................................................................................X
第一章 緒論............................................................................................1
1-1 前言..............................................................................................1
1-2 研究動機......................................................................................2
1-3 研究目標......................................................................................4
第二章 文獻回顧..................................................................................11
2-1 CMOS-MEMS製程...................................................................11
2-2 加速度感測機制........................................................................13
2-3 電容式加速度計........................................................................15
第三章 元件設計與分析......................................................................33
3-1 電容式感測模型........................................................................33
3-2 結構設計 ................................................................................36
3-2.1 質量塊與彈簧設計............................................................37
3-2.2 共振頻模擬........................................................................38
3-2.3 電容變化量模擬................................................................38
3-2.4 結構變形模擬....................................................................39
3-3 懸浮測試結構............................................................................40
第四章 光罩佈局與後製程結果..........................................................50
4-1 光罩佈局....................................................................................50
4-2 後製程結果................................................................................51
第五章 元件量測結果與討論..............................................................62
5-1 結構量測....................................................................................62
5-2 動態頻率響應量測....................................................................63
5-3 輸出量測....................................................................................64
第六章 結論與未來工作..............................................................75
6-1 結論............................................................................................75
6-2 未來工作....................................................................................76
參考文獻..................................................................................................77



[1] http://www.eecs.berkeley.edu/
[2] http://www.akustica.com
[3] H. Baltes, O. Brand,A. Hierlemann, D. Lange, and C. Haleitner, “CMOS-present and future,” IEEE International Conference on Micro Electro Mechanical System, Las Vegas, NV., Jan., pp. 459-466, 2002.
[4] H. Baltes, O. Brand, G. K. Fedder, C. Hierold, J. Korvink, and O. Tabata, CMOS MEMS: Advanced Micro and Nanosystems, Vol. 2 John Wiley & Sons Inc, Weinheim, Germany, 2005.
[5] http://www.analog.com
[6] G.K. Fedder, “CMOS-based sensors,”IEEE Sensors Conference, Irvine, CA,Oct., pp. 125-128, 2005.
[7] http://www.cic.org.tw
[8] H. Seidel, U. Fritsch, R. Gottinger, and J. Schalk, “A piezoresistive silicon accelerometer with monolithically integrated CMOS-circuitry,” International Conference on Solid-state Sensors and Actuators and Eurosensors IX., Stockholm
, Sweden, June, pp. 597-600, 1995.
[9] A. Partridge, A. E. Rice, and T. W. Kenny, “New thin film epitaxial polysilicon encapsulation for piezoresistive accelerometers,” MEMS 01’, Interlaken, Switzerland, Jan., pp. 54-59, 2001.
[10] Y. Nemirovsky, A. Nemirovsky, P. Muralt, and N. Setter, “Design of novel thin-film piezoelectric accelerometer,” Sensors and Actuators A: Physical, 56, pp. 239-249, 1996.
[11] R. de Reus, J. O. Gullov, and P. R. Scheeper, “Fabrication and characterization of a piezoelectric accelerometer,” J. Micromech. Microeng., 9, pp. 123-126, 1999.
[12] F. Mailly, A. Martinez, A. Giani, F. Pascal-Delannoy, and A. Boyer, “Design of a micromachined thermal accelerometer: thermal simulation and experimental results,” Microelectronics Journal, 34, pp.275-280 , 2003.
[13] A. M. Hung, J. Jones, E. Czyzewska, J. Chen, and B. Woods, “Micromachined accelerometer based on convection heat transfer,” MEMS 98’, Heidelberg, Germany, Jan., pp. 627-630, 1998.
[14] H. Xie, and G. K. Fedder, “A CMOS z-axis capacitive accelerometer with comb-finger sensing,” MEMS ‘00, Miyazaki, Japan, Jan., pp. 496-501, 2000.
[15] H. Xie, G. K. Fedder, Z. Pan, and W. Frey, “Design and fabrication of an integrated CMOS-MEMS 3-axis accelerometer,” Nanotech, 2, pp. 420-423, 2003.
[16] CICeNEWS, 75,Jan., 2007.
[17] J. Chae, H. Kulah, and K. Najafi “A hybrid silicon-on-glass (SOG) lateral micro-accelerometer with CMOS readout circuitry,” MEMS 02’, Las Vegas, USA, Jan., pp. 623-626, 2002.
[18] N. Yazdi, and K. Najafi, “An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process,” Journal of Microelectromechanical Systems, 9, pp. 544-550, 2000.
[19] B. Vakili, R. Abdolvand, and F. Ayazi “Sub-micro-gravity capacitive SOI microaccelerometers,” International Conference on Solid-state Sensors, Actuators and Microsystems, Seol, Korea, June, pp. 515-518, 2005.
[20] H. Xie, and G. K. Fedder, “Vertical comb-finger capacitive actuation and sensing for CMOS-MEMS,” Sensors and Actuators A: Physical, 95, pp. 212-221, 2002.
[21] H. Lakdawala, and G. K. Fedder, “Temperature stabilization of CMOS capacitive
accelerometers,” Journal of Micromechanics and Microengineering, 14, pp. 559-566, 2004.

[22] H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel, and G. K. Fedder, “Post-CMOS processing for high-aspect ratio integrated silicon microstructure,” Journal of Micromechanics and Microengineering, 11, pp. 93-101, 2002.
[23] Y. J. Huang, T. Li Chang, H. Pwu Chou, “Study of symmetric microstructures for CMOS multilayer residual stress” Sensors and Actuators A: Physical, 150, pp. 237-242, 2009
[24] H. Lakdawala, and G. K. Fedder, “Analysis of temperature-dependent residual stress gradients in CMOS micromachined structures,” International Conference on Solid State Sensors and Actuators, Sendai, Japan, June, pp.526-529, 1999.
[25] S. Iyer, H. Lakdawala, G. K. Fedder, and T. Mukherjee, “Macromodeling temperature-dependent curl in CMOS micromachined beams,” International Conference on Modeling and Simulation of Microsystems Semiconductors, Sensors and Actuators, Hilton Head Island, USA, May, pp. 81-91, 2001.
[26] S. Iyer, H. Lakdawala, G. K. Fedder, and T. Mukherjee, “Modeling methodology for CMOS-MEMS electrostatic comb,” in Proc, Design, Test, Integration and Packaginf of MEMS/MOEMS, Cannes, Paris, May, pp.114-125, 2002.
[27] J. M. Tsai, and G. K. Fedder, ”Mechanical noise-limited CMOS-MEMS accelerometers,” in Proc. IEEE MEMS, Miami, USA, Jan., pp.630-633, 2005.
[28] H. Luo, G. K. Fedder, and L. R. Carley, “An elastically gimbaled z-axis CMOS-MEMS gyroscope,” in CD Proc. International Symposium on Smart Structure and Microstructure, Hong Kong, Oct., pp. 1-6, 2000.
[29] C. M. Sun, C. W. Wang, and W. Fang, “On the sensitivity improvement of CMOS capacitive accelerometer,” Sensors and Actuators A: Physical, 141, pp. 347-352, 2008.

[30] M. H. Tsai, C. M. Sun, Y. C. Liu, C. W. Wang, and W. Fang, “Design and application of metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors,” Journal of Micromechanics and Microengineering, 19, pp. 1317-1324, 2009.
[31] C. M. Sun, M. H. Tsai, Y. C. Liu, and W. Fang, “Implementation of a monolithic single proof-mass tri-axis accelerometer using CMOS-MEMS Technique,” IEEE Transactions on Electron Devices, 57, pp. 1670-1679, 2010.
[32] P. E. Allen , and D. R. Holberg, CMOS Analog Circuit Design, 2nd Ed., Oxford University Press, USA, 2002.
[33] Taiwan Semiconductor Manufacturing Company, TSMC 0.35um mixed signal 2P4M polyside 3.3V/5V spice model, ver. 2.7, 2007.
[34] http://www.intel.com/



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top