跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/26 22:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃和祥
研究生(外文):Huang, Ho-Hsiang
論文名稱:超薄型晶片軟膜異方性導電膠接合之濕-熱-機械分析
論文名稱(外文):Hygro-Thermo-Mechanical Analysis of an Ultra-Thin-Chip-on-Flex with Anisotropic Conductive Adhesive (ACA) Interconnect
指導教授:陳文華陳文華引用關係鄭仙志
指導教授(外文):Chen, Wen-HwaCheng, Hsien-Chie
口試委員:陳文華鄭仙志劉德騏陸蘇財
口試日期:2011-7-27
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:85
中文關鍵詞:異向性導電膠有限單元黏彈濕熱負載
外文關鍵詞:ACAFEMViscoelasticHygro-Thermo-Loading
相關次數:
  • 被引用被引用:3
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的發展,消費性電子商品不斷推陳出新,除了輕薄,便於攜帶等需求外,具備可撓曲特性亦為一重要訴求。其中超薄晶片軟膜接合(Ultra-Thin-Chip-on-Flex, UTCOF)異向性導電膠(Anisotropic Conductive Adhesive, ACA)覆晶構裝,簡稱為ACA-UTCOF,因其具備優良的可撓曲特性且適用於超細間距(Pitch)之應用,逐漸受到重視。然而此一嶄新的技術,卻易受溫度及濕度影響,造成ACA-UTCOF構裝翹曲變形,另外長時間處於高溫高濕的環境下亦會使ACA發生應力鬆弛現象,以上情形均將導致ACA-UTCOF構裝失效,值得吾人深入探討。
為了解高溫高濕環境(85℃/85%RH) 下ACA-UTCOF構裝的濕-熱-機械行為,本論文首先利用ANSYS®¬¬有限單元套裝軟體建構一三維有限單元熱機械分析模型並進行製程模擬分析,以探討ACA-UTCOF構裝於熱壓合製程後之物理行為,如凸塊(Bump)與電極(Electrode)間之接觸應力,ACA與晶片以及基板間之剝離應力(Peeling Stress),並以此為濕氣入侵後比較的基準。隨後進行材料吸濕實驗,以便掌握構裝內部元件之濕擴散特性,包括飽和濕氣濃度、濕氣擴散速率等,作為數值分析使用。因現有限單元套裝軟體皆不具備濕氣自由度,本論文乃透過Wetness Fraction轉換,將現有熱傳單元類比成濕傳單元使用。接著,本論文根據求得之元件濕擴散特性,配合濕傳分析來研究濕氣在ACA-UTCOF構裝內濕氣入侵的途徑以及分佈情形。最後,本論文進行三維有限單元濕-熱-機械行為分析,此分析將ACA膠材濕氣相依特性納入考量,同時為了探討時間效應,更導入ACA膠材的黏彈特性,以瞭解在長時間下ACA-UTCOF構裝的電性接點之接觸力學行為。
本論文研究,不僅可對濕氣入侵ACA-UTCOF構裝的途徑及分佈情形有較全面的瞭解,亦可評估ACA-UTCOF構裝長時間處於高溫高濕環境下因膠材膨脹及應力鬆弛現象所導致在ACA-UTCOF構裝電性接點接觸失效行為以及界面間剝離應力的變化。本論文之成果將可作為可撓性封裝設計與開發之參考。

Due to the strong demand of electronic products with light-weight, flexibility and portability and rollability from consumers, the development of flexible electronics with flexible interconnects is vigorously underway. Flexible electronics is a technology that extends electronics devices beyond the rigid form factor. It is highly recognized that it can bring a very vigorous drive toward the new flourish of economic growth in the electronics industry.
In the study, a flexible interconnect technology based on an ultra thin chip and a very thin flexible polyimide (PI) circuit substrate is first introduced. The electrical interconnects and also thermal-mechanical connections of the technology are formed through a piece of anisotropic conductive adhesive (ACA). It is thus termed ACA-typed ultra-thin-chip-on-flex (UTCOF) interconnect technology (i.e., ACA-UTCOF in abbreviation) throughout the study. The technology is promising and potential for a variety of flexible electronics applications, such as flexible display, paper-thin smart labels, particularly the RFID labels, miniaturized medical electronic systems, E-paper, E-label and memory chip stacking etc.
Before the full and successful realization and implementation of the ACA-UTCOF technology, many technical challenges need to be resolved, including reliability and bendability. For example, the technology is very vulnerable to temperature and humidity variations because of the epoxy-based interconnect technology. Thus, the study aims at the investigation of the hygro-thermo-mechanical behaviors of the advanced ACA-UTCOF technology during high temperature and humidity conditions through numerical analysis and experimental validation. The considered hygro-thermal behaviors include moisture saturation time, moisture diffusion rate, moisture concentration, moisture diffusion coefficient, saturated moisture concentration. To achieve the goal, an ACA-UTCOF test vehicle is first constructed for subsequent testing and characterization, and the humidity properties of the PI substrate are experimentally determined by measuring the weight gain during moisture absorption. Using the derived humidity properties, three-dimensional (3D) moisture transient finite element (FE) analysis based on Fick law is carried out to calculate the moisture distribution and passage in the package. Subsequently, by the calculated moisture distribution, 3D hygro-thermo-mechanical FE analysis is performed to predict the strains/stresses behaviors of the package at high temperature and humidity conditions. At last, the effects of the stress relaxation behaviors of the ACA on the hygro-thermo-mechanical behaviors are assessed through nonlinear viscoelastic FE analysis.
FE simulation results reveal that moisture diffusion into the ACA layer is mainly through the substrate rather than the periphery side of the ACA. In addition, the ACA-UTCOF test vehicle reaches moisture saturation after about twenty hours under an 85℃/85% relative humidity condition. Most importantly, from the experimental results, it is found that moisture would play a much more significant role in the interconnect reliability of the ACA-UTCOF technology than temperature.

摘要 I
目錄 V
表目錄 VIII
圖目錄 IX

一、導論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 研究目標與範圍 7
二、超薄型晶片軟膜接合異向性導電膠覆晶構裝 9
2.1 ACA-UTCOF結構外型及材料 9
2.2 晶片薄化及切割 10
2.3 構裝製程 10
三、分析理論與方法 12
3.1 三維有限單元暫態熱傳分析 12
3.1.1 暫態熱傳分析 12
3.1.2 接觸熱阻 13
3.1.3 熱傳邊界條件 14
3.2 三維有限單元暫態濕傳分析 15
3.2.1 一維濕氣擴散理論 15
3.2.2 暫態濕傳分析 18
3.3 三維有限單元接觸力學分析 19
3.3.1 接觸力學分析 20
3.3.2 網格生死模擬技術 20
3.3.3 有限體積加權平均法 21
3.4 線性黏彈理論 22
3.4.1 線性黏彈數值模型 22
3.4.2 時間-溫度疊合原理(Time-Temperature Superposition Principle, TTSP) 23
四、三維有限單元分析模型 26
4.1 製程熱傳分析模型 26
4.2 製程結構分析模型 27
4.3 製程後分析模型 27
五、實驗內容及程序 28
5.1 熱電偶實驗 28
5.1.1 熱電偶原理 28
5.1.2 熱電偶實驗設備 28
5.2 翹曲量量測 28
5.2.1 翹曲量量測原理 29
5.2.2 翹曲量量測設備 29
5.3 材料吸濕試驗 29
5.3.1 材料吸濕理論 30
5.3.2 試片及環境 31
5.3.3 吸濕實驗程序 31
5.3.4 吸濕實驗設備 32
六、結果與討論 33
6.1 熱電偶實驗驗證 33
6.2 翹曲量實驗驗證 33
6.3 熱壓合製程分析 34
6.4 材料吸濕試驗 36
6.5 暫態濕傳分析結果 37
6.6 ACA-UTCOF濕-熱-結構分析 39
七、結論與未來展望 42
參考文獻 44
附表 49
附圖 54


1 Chen, W.H,; Cheng, H.C,; Shen, H.A. (2003): An Effective Methodology for Thermal Characterization of Electronic Packaging, IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 1, pp. 222-232.
2 Cheng, H.C.; Chen, W.H.; Lin, C.S.; Hsu, Y.Y.; Uang, R.H. (2009): On the Thermal-Mechanical Behaviors of a Novel Nanowire-based Anisotropic Conductive Film Technology. IEEE Transactions on Advanced Packaging, Vol. 32, No. 2, pp. 546-56.
3 Cheng, H.C.; Chiang, K.N.; Chen, C. K.; Lin, J.C. (2001): A Study of Factors Affecting Solder Joint Fatigue Life of Thermally Enhanced Ball Grid Array Assemblies. Journal of the Chinese Institute of Engineers, Vol. 24, No. 4, pp. 439-451
4 Cheng, H.C.; Ho, C.L.; Chen, W.C.; Yang, S.S. (2006): A Study of Process-induced Deformations of Anisotropic Conductive Film (ACF) Assembly. IEEE Transactions on Components and Packaging Technologies, Vol. 29, No. 3, pp.577-588.
5 Cheng, H.C.; Ho, C.L.; Chiang, K.N.; Chang, S.M. (2004): Process-dependent Contact Characteristics of NCA Assemblies. IEEE Transactions on Components and Packaging Technologies, Vol. 27, No. 2, pp. 398-410.
6 Cheng, H.C.; Hwang, W.Y.; Kao, K.S.; Tsang, J.; Yang, S.S.; An, C.C.; Chang, S.M. (2009): Thermal-Mechanical Process Simulation of an Advanced NCF Technology. IEEE Transactions on Electronics Packaging Manufacturing, Vol. 32, No. 4, pp. 301-310.
7 Chiang, K.N.; Chang, C.W.; Lin, J.D. (2001): Process Modeling and Thermal/Mechanical Behavior of ACA/ACF type Flip-Chip Packages. ASME Transaction, Journal of Electronic Packaging, Vol. 123, Issue 4, pp.331-337.
8 Chiriac, V.A.; Lee, T.Y.T. (2001): Transient Thermal Analysis of an ACF Package Assembly Process. IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 4, pp. 673-681.
9 Fan, B.; Chan, K.L.; Wong, K.Y.; Yuen, M.F. (2006): Investigation of Moisture Diffusion in Electronic Packages by Molecular Dynamics Simulation. Journal of Adhesion Science and Technology, Vol. 20, No. 16, pp. 1937-1947.
10 Gibson, R.F. (2007): Principles of Composite Material Mechanics, CRC Press. Taylor & Francis Group.
11 Hsu, H.C.; Hsu, Y.T. (2009): Characterization of Hygroscopic Swelling and Thermo-Hygro-Mechanical Design on Electronic Package. Journal of Mechanics, Vol. 25, No. 2, pp. 225-232.
12 Inoue, M.; Miyamoto, T.; Suganuma, K. (2004): Analysis of Influential Factors in Determining Adhesive Strength of ACF Joints. Polytronic 4th, IEEE International Conference. On Polymers & Adhesives, pp. 148-152.
13 Jang, C.; Han, S.; Kim, H.; Kang, S. (2006): A Numerical Failure Analysis on Lead Breakage Issues of Ultra Fine Pitch Flip Chip-on-Flex and Tape Carrier Packages During Chip/Film Assembly Process. Microelectronics Reliability, Vol. 46, Issues 2-4, pp. 487–495.
14 JEDEC Standard JESD22-A120A (2001): Test Method for Measurement of Moisture Diffusivity and Water Solubility in Organic Materials Used in Electronic Devices.
15 Kim, J.W.; Koo, J.M.; Lee, C.Y.; Noh, B.I.; Yoon, J.W.; Kim, D.G.; Park S.K.; Jung, S.B. (2008): Thermal Degradation of Anisotropic Conductive Film Joints under Temperature Fluctuation. International Journal of Adhesion & Adhesives Vol. 28, Issue 6, pp. 314–320.
16 Kwon, W.S.; Paik, K.W. (2004): Contraction Stress Build-up of Anisotropic Conductive Films (ACFs) for Flip-Chip Interconnection: Effect of Thermal and Mechanical Properties of ACFs. Journal of Applied Polymer Science, Vol. 93,Issue 6, pp. 2634–2641.
17 Kwon, W.S.; Paik, K.W. (2004): Fundamental Understanding of ACF Conduction Establishment with Emphasis on the Thermal and Mechanical Analysis. International Journal of Adhesion & Adhesives, Vol. 24, Issue 2, pp. 135–142.
18 Liu, D.S.; Yeh, S.S.; Kao, C.T.; Shen, H.C.; Shen, G.S.; Liu, H.H. (2009): Optimization of Bonding Force, Sinking Value and Potting Gap Size in COF Inner Lead Bonding Process. IEEE Transactions on Advanced Packaging, Vol. 32, No. 3, pp. 593-601.
19 Liu, X.; Xu, S.; Lu, G.Q.; Dillard, D.A. (2002): Effect of Substrate Flexibility on Solder Joint Reliability. Microelectronics Reliability, Vol. 42, Issue 12, pp. 1883–1891.
20 Loos, A.C.; Springer, G.S. (1979): Moisture Absorption of Graphite-Epoxy Composites Immersed in Liquids and in Humid Air. Journal of Composite Materials, Vol. 13, No. 2, pp. 131-147.
21 Lu, S.T.; Chen, W.H. (2010): Reliability and Flexibility of Ultra-Thin-Chip-on-Flex (UTCOF) Interconnects With Anisotropic Conductive Adhesive (ACA) Joints. IEEE Transactions on Advanced Packaging, Vol. 33, No. 3, pp. 702-712.
22 Ma, X.; Jansen, K.M.B.; Ernst, L.J.; Driel, W.D.V.; Sluis, O.V.D.; Zhang, G.Q. (2007): Characterization of Moisture Properties of Polymers for IC Packaging. Microelectronics Reliability, Vol. 47, Issues 9-11, pp. 1685–1689.
23 Ma, X.; Jansen, K.M.B.; Zhang, G.Q.; Driel, W.D.V.; Sluis, O.V.D.; Ernst, L.J.; Regards, C.; Gautier, C.; Fremont, H. (2010): A Fast Moisture Sensitivity Level Qualification Method. Microelectronics Reliability, Vol. 50, Issues 9-11, pp. 1654–1660.
24 Park, J.H.; Jang, J.W.; Jang, K.W.; Paik, K.W.; Lee, S.B. (2009): Fracture Toughness Assessment of ACF Flip-chip Packages under High Moisture Condition with Moire Interferometry. Microelectronics and Packaging Conference, EMPC 2009. European, pp. 1-7.
25 Sim, G.D.; Chung, C.K, Paik, K.W.; Lee, S.B. (2010): Moisture Induced Interface Weakening in ACF Package. Materials Science and Engineering A, Vol. 528, Issue 2, pp. 698-705.
26 Shen, C.H.; Springer, G.S. (1976): Moisture Absorption and Desorption of Composite Materials. Journal of Composite Materials, Vol. 10, No. 1, pp. 2-20.
27 The, L.K.; Teo, M.; Anto, E.; Wong, C.C.; Mhaisalkar, S.G.; Teo, P.S.; Wong, E.H. (2005): Moisture-Induced Failures of Adhesive Flip Chip Interconnects. IEEE Transactions on Components and Packaging Technologies, Vol. 28, No. 3, pp. 506-516.
28 Teo, M.; Mhaisalkar, S.G.; Wong, E.H.; Teo, P.S.; Wong, C.C.; Ong, K.; Goh, C.F.; The, L.K. (2005): Correlation of Material Properties to Reliability Performance of Anisotropic Conductive Adhesive Flip Chip Packages. IEEE Transactions on Components and Packaging Technologies, Vol. 28, No. 1, pp. 157-164.
29 Williams, M.L.; Landel, R.F.; Ferry, J.D. (1955): The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids. Journal of the American Chemical Society , Vol. 77, Issue 12, pp. 3701-3707.
30 Wong, E.H.; Rajoo, R. (2003): Moisture Absorption and Diffusion Characterization of Packaging Materials––Advanced Treatment. Microelectronics Reliability, Vol. 43, Issue 12, pp. 2087–2096.
31 Wong, E.H.; Teo, Y.C.; Lim, T.B. (1998): Moisture Diffusion and Vapour Pressure Modeling of IC Packaging. Electronic Components and Technology Conference, 48th, IEEE, pp. 1372-1378.
32 Wunderle, B.; Kallmayer, C.; Walter, H.; Braun, T.; Gollhardt, A.; Michel, B.; Reichl, H. (2009): Failure Modeling of ACA-Glued Flip-Chip on Flex Assemblies. Microsystem Technologies, Vol. 15, No. 3, pp. 3–15.
33 Xie, B.; Shi, X.Q.; Ding, H. (2007): Understanding of Delamination Mechanism of Anisotropic Conductive Film (ACF) Bonding in Thin Liquid Crystal Display (LCD) Module. IEEE Transactions on Components and Packaging Technologies, Vol. 30, No. 3, pp. 509-516.
34 Yin, C.Y.; Lu, H.; Bailey, C.; Chan, Y.C. (2006): Analyzing the Performance of Flexible Substrates for Lead-Free Applications. Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems. EuroSime 2006. 7th International Conference, pp. 1-6.
35 Yoon, J.Y.; Kim, I.; Lee, S.B. (2009): Measurement and Characterization of the Moisture-Induced Properties of ACF Package. Journal of Electronic Packaging, Vol. 131, Issue 2, pp. 21012.
36 何向中, (2006): 超薄晶片於軟板上構裝技術之製程熱機械力學行為分析. 碩士論文-逢甲大學航太與系統工程學系.
37 陳怡伶, (2009): 異向性導電膠之黏彈性質與覆晶軟膜之可靠度關聯性評估. 碩士論文-國立清華大學動力機械工程研究所.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top