跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 01:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹凱鈞
研究生(外文):Chan, Kai-Chun
論文名稱:欠致動雙足機器人動態行走之控制與實作
論文名稱(外文):Implementation and control of an Underactuated Biped Robot for Dynamic walking
指導教授:葉廷仁
指導教授(外文):Yeh, Ting-Jen
口試委員:顏炳郎洪健中葉廷仁
口試日期:2011-7-18
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:100
中文關鍵詞:欠致動雙足機器人人類行走自然步態
外文關鍵詞:Natural human gaitBipedal robotUnder-actuation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:481
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:2
本研究的目的為實現一仿人類自然步態行走之欠致動雙足機器人。以人類自然步態行走時,支撐腳膝關節角度會伸直以降低致動器的出力;擺動腳會經歷腳跟離地(heel-off),腳掌繞腳趾關節旋轉(toe rotation),繼而腳跟碰撞(heel-strike)地面以便邁開步伐、提高行走速度。為了達成此目標,欠致動雙足機器人在矢狀平面上利用賽格威(Segway)動態穩定的概念,使零點動態作為行進的動力,而非軌跡規劃;在額狀平面上藉由腳底壓力感測器所獲得的ZMP資訊,產生機器人腿部的補償動作維持動態平衡,以增加欠致動系統的穩定性。此外,利用基於事件的控制來連貫隨著不同姿態轉變的控制目標,完成雙足機器人的連續行走。研究中以實作驗證模仿人類自然步態行走的可行性,和加入側方向動態平衡對行走的重要性。
目錄
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XI
第一章 序論 1
1.1 研究動機與目的 1
1.2 雙足機器人的驅動力來源 2
1.2.1 全致動式雙足機器人 2
1.2.2 被動式雙足機器人 5
1.2.3 欠致動式雙足機器人 7
1.3 人類行走 10
1.4 論文簡介 13
第二章 欠致動雙足機器人行走策略 15
2.1 矢狀平面(sagittal plane)分析 15
2.1.1 行走過程的欠致動關節 16
2.2 雙足機器人矢狀平面行走策略 18
2.2.1 初始化階段 - 重心轉移 19
2.2.1.1 控制策略 22
2.2.2 第一階段 - 站立腳腳踝旋轉 23
2.2.2.1 控制策略 24
2.2.3 第二階段 - 站立腳腳趾旋轉 25
2.2.3.1 控制策略 27
2.2.4 第三階段 - 擺動腳著地 28
2.2.4.1 擺動腳腳跟著地 29
2.2.4.2 擺動腳腳掌著地 31
2.3 額狀平面(frontal plane)分析 32
第三章 控制器設計 36
3.1 矢狀平面(sagittal plane)的控制器設計 36
3.1.1 站立腳虛擬限制 37
3.1.2 擺動腳虛擬限制 38
3.2 額狀平面(frontal plane)的控制器設計 45
3.2.1 雙腳站立階段(double support phase) 46
3.2.2 單腳站立階段(single support phase) 52
3.3 基於事件的控制方法(event-based control)57
第四章 雙足機器人硬體架構 65
4.1 硬體架構 65
4.2 控制單元及電路 68
4.3 高低頻互補式角度感測器模組 69
4.4 腳底壓力感測器模組設計與實現 70
4.4.1 loadcell介紹與放大電路 71
4.4.2 壓力感測器模組機構設計 74
4.4.3 壓力感測器模組化 75
4.4.4 壓力感測器模組量測與ZMP計算 76
4.5 致動器 80
第五章 實驗結果 83
5.1 額狀平面(frontal plane)定點動態平衡實驗 83
5.2 雙足機器人行走實驗 84
第六章 結論與未來方向 93
6.1 結論 93
6.2 未來方向 94
附錄 95
參考文獻 97






參考文獻
[1] M. Hirai, et al., “The Development of Honda Humanoid robot,” in Proc., IEEE International Conference on Robotics and Automation, pp. 1321-1326, May 1998.
[2] M. Vukobratovic, B. Brovac, D. Surla and D.Stokic, Biped Locomotion, Springer-Verlag, 1990.
[3] K. Nagasaka, H. Inour and M. Inaba, “Dynamic Walking Pattern Generation for a Humanoid Robot Based on Optimal Gradient Method,” Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, Vol.6, pp. 908-913, 1999.
[4] J. Yamaguchi, et al., “Development of a Bipedal Hunamoid Robot Having Antagonistic Driven Joints and Three DOF Trunk,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp.96-101, 1998.
[5] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi and H. Hirukawa, “A Realtime Pattern Generator for Biped Walking,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 31-37, 2002.
[6] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi and H. Hirukawa, “Biped walking pattern generation by using preview control of zero-moment point,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1620-1626, 2003
[7] J.-H. Kim, “Walking Pattern Generation of a Biped Walking Robot using Convolution Sum,” 2007 7th IEEE-RAS International Conference on Humanoid Robots, pp. 539-544, Nov. 29 2007-Dec. 1 2007.
[8] Choi, Kim, Oh and You, “Posture/Walking Control for Humanoid Robot Based on Kinematic Resolution of CoM Jacobian With Embedded Motion,” IEEE Trans. On Robotics, vol.23, issue 6, pp.1285-1293, 2007.
[9] T. Sugihara, Y Nakamura, H. Inoue, “Realtime Humanoid Motion Generation through ZMP Manipulation based on Inverted Pendulum Control,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1404-1409, 2002.
[10] T. McGeer, “Passive Dynamic Walking,” International Journal of Robotics Research, Vol. 9, No., 2, pp. 62-82, 1990.
[11] T. McGeer, “Passive Walking with Knees,” Proceedings of the IEEE Conference on Robotics and Automation, pp. 1640-1645, 1990.
[12] T. McGeer, “Passive Dynamic Biped Catalogue,” Proc. 2nd Int. Symp. Exper. Robot, pp. 465-490, NewYork: Springer-Verlag , 1991.
[13] S. Collins, M. Wisse and A. Ruina, “A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees,” The International Journal of Robotics Research, Vol. 20, No. 7, pp. 607-615, July 2001.
[14] S. Collins, A. Ruina, R. Tedrake and M. Wisse, “Efficient Bipedal Robots Based On Passive-dynamic Walkers,” Science, Vol. 307, No. 5712, pp. 1082-1085, 2005.

[15] J. W. Grizzle, G. Abba and F. Plestan, “Asymptotically Stable Walking For Biped Robots: Analysis Via Systems With Impulse Effects,” IEEE Transactions on Automatic Control, l, Vol. 46, pp. 51-64, January 2001.
[16] E. R. Westervelt, G. Buche, and J. W. Grizzle, “Experimental Validation Of A Framework For The Design Of Controllers That Induce Stable Walking In Planar Bipeds,” The International Journal of Robotics Research, vol. 23, No. 6, pp. 559-582, 2004.
[17] C. Chevallereau, D. Djoudi and J. W. Grizzle, “Stable Bipedal Walking with Foot Rotation Through Direct Regulation of the Zero Moment Point,” IEEE Trans. On Robotics, Vol.24, No.32, pp. 390-401, 2008.
[18] C. Chevallereau, J. W. Grizzle, and C.-L. Shih, “Asymptotically Stable Walking of a Five-Link Underactuated 3D Bipedal Robot,” IEEE Trans. On Robotics, Vol. 25, No.1, pp. 37-50, Feb. 2009.
[19] Ting-Ying Wu, and T.-J. Yeh, “Optimal Design and Implementation of an Energy-Efficient, Semi-Active Biped,” Robotica, Vol. 27, 2009, pp. 841-852.
[20] Ting-Ying Wu, and T.-J. Yeh, “An Experimental Iterative Learning Strategy for a Biped Performing Semi-Active Walking,” 2008, submitted to International Journal of Humanoid Robotics.
[21] K. Nishiwakit, S. Kagamit, Y. Kuniyoshit, M. Inabat, H. Inouet, “Toe Joints that Enhance Bipedal and Fullbody Motion of Humanoid Robots,” Proc. IEEE Int. Conf. on Robotics and Automation, May. 2002.
[22] R. Sellaouti, O. Stasse, S. Kajita, K. Yokoi and A. Kheddar, “Faster and Smoother Walking of Humanoid HRP-2 with Passive Toe Joints,” IEEE Int. Conf. on Intelligent Robotics and Systems, 9-15, pp. 909-4914, Oct. 2006.
[23] Y. Ogura, K. Shimomura, A. Kondo, A. Morishima, T. Okubo, S. Momoki, Hun-ok Lim and A. Takanishi, “Human-like Walking with Knee Stretched, Heel-contact and Toe-off Motion by a Humanoid Robot,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3976-3981, 2006.
[24] 陳信甫,「基於事件控制達成擬人自然步態行走之欠致動雙足機器人」,國立清華大學動力機械工程學系碩士論文,2010
[25] 陳育霆,「人力驅動式自我平衡獨輪車之控制系統設計與實作」,國立清華大學動力機械工程學系碩士論文,2010
[26] http://world.honda.com/ASIMO/technology/
[27] http://orthoteers.com/images/uploaded/images7/gait4.jpg
[28]http://www.wpi.edu/News/Transformations/2002Winter/ibot.html
[29] http://www.segway.com
[30] http://www.transducertechniques.com/SLB-Load-Cell.cfm
[31] http://www.robotis.com/xe/dynamixel_en
[32] http://wn.com/Nao_Robot
[33] http://www.aldebaran-robotics.com/en

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top