跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 15:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余智偉
研究生(外文):Yu, Zhi-Wei
論文名稱:適應性影像強化技術在焊錫缺陷檢驗之應用
論文名稱(外文):Adaptive Image Contrast Enhancement for Defect Detection of Solder Joints
指導教授:彭明輝彭明輝引用關係
指導教授(外文):Perng, Ming-Hwei
口試委員:陳世亮蔡宏營彭明輝
口試日期:2011-7-27
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:75
中文關鍵詞:適應性影像強化對比強化
相關次數:
  • 被引用被引用:0
  • 點閱點閱:437
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:2
現今的消費性電子產品以降低生產週期、大量生產和產品品質穩定為目標,同時為了因應電子元件趨向微小化,大量運用了表面黏著技術(SMT),由於此過程中的錫膏材料、刮刀壓力與速度、鋼板開孔形狀等因素,在自動化的生產中產品難免會產生缺陷,若想增加自動檢測的穩健性就必須先將影像做強化處理,本研究針對四方平面無引腳封裝(QFN)底部的導熱片與印刷電路板之間的焊錫空洞缺陷檢驗發展穩健的影像強化法,以利於後續的檢測。
本研究分成兩個部分:第一部分是分析目前已應用於導熱片空洞缺陷檢測的適應性影像強化法,並提出改良,再以實驗結果驗證此改良確實能增強檢測的穩健性; 第二部分發展兩個更強健的適應性影像強化法,這兩個方法各有其適用條件,本研究將討論實驗結果並給出使用建議。

摘要.................................................I
致謝................................................II
目錄...............................................III
圖目錄..............................................IV
第一章 簡介.........................................1
1-1問題背景與研究動機................................2
1-2 文獻回顧.........................................5
1-2-1 影像強化技術...................................5
1-2-2 影像分割技術..................................16
1-3 問題定義與研究策略..............................21
第二章 基於局部統計值之適應性影像強化法............24
2-1 既有局部統計值之適應性影像強化法之介紹..........25
2-2 既有局部統計值之適應性影像強化法之優缺點分析....33
2-3局部統計值之適應性影像強化法之改良...............36
2-4 結果與討論......................................37
第三章 背景移除之適應性影像強化法...................45
3-1基於內插之適應性影像強化法.......................45
3-2基於形態學之適應性影像強化法.....................55
第四章 實驗結果與討論...............................59
第五章 結論.........................................71
參考文獻............................................72

[1] 蔡聰男,「自適應式表面黏著製程品質預測控制系統之發展」,
博士論文,成功大學製造工程研究所,民國92年。

[2] 陳洊丞,「電腦斷層影像與表面封裝元件之校正與缺陷檢測」,碩
士論文,清華大學動力機械工程學系,民國98年。

[3] 立錡科技,取自http://www.cntronics.com/public/pdfupload/App
Note QA200501-A Footprint Design and Surface Mount Application
for QFNDFN Package.pdf,2011。

[4] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 2002.

[5] M. L. Cocklin, A. R. Gourlay, P. H. Jackson, G. Kaye, I. H. Kerr, and
P. Lams, “Digital processing of chest radiographs,” Image and Vision
Computing, vol. 1, pp. 67-78, 1983.

[6] G. A. Johnson, N. Danieley, and C. E. Ravin, “Processing alternatives
for digital chest imaging,” Radiologic Clinics of North America,
vol. 23, pp. 335-340, 1985.

[7] H. D. Cheng and X. J. Shi, “A simple and effective histogram
equalization approach to image enhancement,” Digital signal
processing, vol. 14, pp. 158-170, 2004.

[8] D.J. Ketcham, R. W. Lowe, and J. W. Weber, “Real-time
enhancement techniques,” Seminar on Image Processing,
Hughes Aircraft, pp. 1–6, 1976.


[9] R. A. Hummel, “Image enhancement by histogram transformation,”
Computer Vision, Graphics and Image Processing, vol. 6,
pp. 184–195, 1977.

[10] S. M. Pizer, J. B. Zimmerman, and E. V. Staab, “Adaptive grey level
assignment in CT scan display,” Journal of computer assisted
tomography, vol. 8, pp. 300-308, 1984.

[11] R. H. Sherrier and G. Johnson, “Regionally adaptive histogram
equalization of the chest,” Medical Imaging, IEEE Transactions on,
vol. 6, pp. 1-7, 1987.

[12] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie,
A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and
K. Zuiderveld, “Adaptive histogram equalization and its variations,”
Computer vision, graphics, and image processing, vol. 39,
pp. 355-368, 1987.

[13] A. M. Reza, “Realization of the contrast limited adaptive histogram
equalization (CLAHE) for real-time image enhancement,” The
Journal of VLSI Signal Processing, vol. 38, pp. 35-44, 2004.

[14] J. Y. Kim, L. S. Kim, and S. H. Hwang, “An advanced contrast
enhancement using partially overlapped sub-block histogram
equalization,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 11, pp. 475-484, 2001.

[15] P. G. Tahoces, J. Correa, M. Souto, C. Gonzalez, L. Gomez, and
J. J. Vidal, “Enhancement of chest and breast radiographs by
automatic spatial filtering,” Medical Imaging, IEEE Transactions
on, vol. 10, pp. 330-335, 1991.

[16] T. Peli and J. S. Lim, “Adaptive filtering for image enhancement,”
Optical Engineering, vol. 21, pp. 108-112, 1982.

[17] M. Ishida, P. H. Frank, K. Doi, and J. L. Lehr, “High quality digital
radiographic images,” Radiographics, vol. 3, pp. 325-338, 1983.

[18] P. M. Narendra and R. C. Fitch, “Real-time adaptive contrast
enhancement,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. PAMI-3, pp. 655-661, 1981.

[19] D. H. Ballard and C. M. Brown, Computer Vision. Englewood Cliffs,
NJ: Prentice-Hall, 1982.

[20] S. Mukhopadhyay and B. Chanda, “A multiscale morphological
approach to local contrast enhancement,” Signal Processing, vol. 80,
pp. 685-696, 2000.

[21] A. R. Jimenez-Sanchez, J. D. Mendiola-Santibanez, I. R.
Terol-Villalobos, G. Herrera-Ruiz, D. Vargas-Vazquez,
J. J. Garcia-Escalante, and A. Lara-Guevara, “Morphological
background detection and enhancement of images with poor
lighting,” Image Processing, IEEE Transactions on, vol. 18,
pp. 613-623, 2009.

[22] I. R. Terol-Villalobos, “Morphological connected contrast mappings
based on top-hat criteria: A multiscale contrast approach,” Optical
Engineering, vol. 43, pp. 1577–1595, 2004.

[23] Z. Y. Chen, B. R. Abidi, D. L. Page, and M. A. Abidi, “Gray-level
grouping (glg): An automatic method for optimized image contrast
enhancement-part II: The variations,” Image Processing, IEEE
Transactions on, vol. 15, pp. 2303-2314, 2006.

[24] N. Otsu, “A threshold selection method from gray-level histograms,”
Automatica, vol. 11, pp. 285-296, 1975.

[25] J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” Proceedings of 5-th Berkeley
Symposium on Mathematical Statistics and Probability, University
of California Press, 1967, pp. 281-297.

[26] Z. Yu and C. Bajaj, “A fast and adaptive method for image contrast
enhancement,” in IEEE International Conference on Image
Processing, 2004, pp. 1001-1004, vol. 2.

[27] L. Vincent, “Morphological grayscale reconstruction in image
analysis: Applications and efficient algorithms,” Image Processing,
IEEE Transactions on, vol. 2, pp. 176-201, 1993.

[28] 劉育鑫,「偵測氣泡瑕疵之適應性分割技術」,碩士論文,
清華大學動力機械工程學系,民國100年。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top