跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/24 02:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁麒耀
研究生(外文):Weng, Chi-Yao
論文名稱:The Study of Steganographic Data Embedding with High Performance in Digital Images
論文名稱(外文):數位影像上高效能資訊隱藏技術之研究
指導教授:孫宏民
口試委員:謝續平曾文貴王旭正顏嵩銘許富皓黃慶育
口試日期:2011-7-27
學位類別:博士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:109
中文關鍵詞:資訊隱藏高效能不易被偵測模數調整EMD最不重要位元取代法
外文關鍵詞:Information HidingEfficient PerformanceUndetectabilityModulus adjusting strategy.EMDLSB
相關次數:
  • 被引用被引用:0
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
資訊隱藏(Information Hiding)是一種機密訊息的溝通技術,它將機密訊息偽裝在掩護媒體中,並且不讓機密訊息被惡意者所知悉或所偵測出。高效能(意指高容量、高品質、不被偵測)的資訊隱藏技術,為現今資訊隱藏技術發展的目標。在本論文中,我們提出了在空域上之高效率資訊隱藏技術,主要分為二部份,第一部份其基本技術為最不重要位元取代法(Least Significant Bits),考量像素值所屬於的區塊,採用不同的調整性位元取代法(Adaptive LSB);第二部份技術的基本技術為EMD (Exploiting Modification Direction)法,將原本EMD方法,考量以改變一個像素值的方法,擴展成改變多個像素,進而提出了一系列的EMD之資訊隱藏技術,包括FoEMD、HoEMD、和AdEMD等,另外,我們提出了模數調整的方法(modulus Adjusting Strategy),與上述FoEMD、HoEMD、和AdEMD技術相整合,以增加資訊隱藏技術的彈性和周延性。從實驗數據顯示,與先前學者所提出的資訊隱藏技術相比較下,我們的方法皆具有高效能的特性。
Information hiding is the science of communication in such way that the hidden message into cover media can not to be known or detected. The requirement of steganography with efficient performance, such as high embedding capacity, high image quality, and undetectability, has become an important topic. In this dissertation, information hiding techniques with high performance in spatial domain are proposed, which contains two parts. First part is used the concept of LSB as a basis and adopted an Adaptive LSB approach considered that the pixel differencing falls into lower-level or higher-level. Second part is used the concept of EMD as a basis and extend original methodology, which one pixel is changed by 1 since the embedded algorithm is applied, into a group with multi-pixel and each pixel is changed by k. Thus, a series of hiding techniques are proposed, including FoEMD, HoEMD, and AdEMD. Furthermore, for hiding data more flexibly and completely, a strategy of modulus adjusting is proposed and combined with above techniques of FoEMD, HoEMD, and AdEMD. As shown in the experimental results, our proposed approaches have higher capacity than that of previous researches, and they own the characteristic of efficient performance.
中文摘要 i
Abstract ii
Acknowledgements iii
Contents iv
List of Figures vii
Table of Contents x
Chapter 1 Introduction 1
1.1 Research Motivation 1
1.2 Research Backgrounds 2
1.3 Organization of Dissertation 9
Chapter 2 Literature Review 10
2.1 Pixel-Value Differencing (PVD) 11
2.2 Pixel-Value Differencing and LSB 12
2.3 Image Hiding Scheme in Spatial Domain 14
2.4 A Steganography based on Modulo Function 16
2.5 Exploiting Modification Direction Scheme 17
Chapter 3 Adaptive Data Hiding Scheme Based on LSB Substitution 19
3.1 Data Embedding Procedures 19
3.2 Data Extracting Procedure 23
3.3 Experimental Resultant and Discussions 23
3.4 Fundamental Theorems 29
3.5 Summary 45
Chapter 4 Flexibilbity of Exploiting Modification Direction Scheme 46
4.1 Data Embedding Algorithm 47
4.2 Data Extracting Algorithm 50
4.3 Discussions and Analyses 52
4.3.1 Stabilities and Capacities 52
4.3.2 Saturation at Pixels 56
4.3.3 Security Analysis 56
4.4 Fundamental Theorems 59
4.5 Summary 63
Chapter 5 Highlight of Exploiting Modification Direction Scheme 64
5.1 Data Embedding Algorithm 64
5.2 Data Extracting Algorithm 67
5.3 Experimental Resultant and Discussions 68
5.3.1 Performance Analysis 69
5.3.2 Exceptions procedure for overflow/underflow 73
5.3.3 Security analysis 74
5.4 Fundamental Theorems 75
5.5 Summary 78
Chapter 6 Adaptive Exploiting Modification Direction Scheme 79
6.1 Data Embedding Algorithm 80
6.2 Data Extracting Scheme 83
6.3 Experimental Resultant and Discussions 84
6.3.1 Performance and Security Analysis 86
6.3.2 Exceptions Procedure for overflow/underflow 90
6.4 Fundamental Theorems 91
6.5 Summary 100
Chapter 7 Conclusions and Future Works 101
Bibliography 103


[1]W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for Data Hiding”, IBM Systems Journal, Vol. 35, pp. 313–316, 1996.
[2]R. J. Anderson and F.A.P. Peticolas, “On the Limits of Steganography”, IEEE Journal of Selected Areas in Communications, Vol. 16, No. 4, pp. 474–481, 1998.
[3]F.A.P. Peticolas, R. J. Anderson, and M. G. Kuhn, “Information Hiding- A Survey”, Proceedings of the IEEE, Vol. 87, No. 17, pp. 1062–1078, 1999.
[4]D. Artz, “Digital Steganographic: Hiding Data within Data”, IEEE Internet Computer, Vol. 5, pp. 75–80, 2001.
[5]C. Cachin, “An Information Theoretic Model for Steganography”, in proceeding 2nd Information Hiding Workshop, pp. 306–318, 1998.
[6]P. M. S. Raja and E. Baburaj, “Survey of Steganographic Techniques in Network Security”, International Journal of Research and Reviews in Computer Science, Vol. 2, No. 1, pp. 96–102, 2011.
[7]Y. H. Chu and S. Chang, “Dynamical Cryptography Based on Synchronized Chaotic Systems”, IEE Electronics Letters, Vol. 35, No. 12, pp. 974–975, 1999.
[8]H. J. Highland, “Data Encryption: a Non-Mathematical Approach”, Computer Security, Vol. 16, pp. 369–386, 1997.
[9]I. J. Cox, M. L. Miller, and J. A. Bloom, “Digital Watermarking: Principles & Practice”, Morgan Kaufmann Publisher, San Francisco, 2001.
[10]I. J. Cox, M. L. Miller, and J. A. Bloom, “Watermarking Applications and Their Properties”, In proceeding of International Conference on Information Technology: Coding and Computing, pp. 6–10, 2001.
[11]C. H. Yang, C. Y. Weng, S. J. Wang, and H. M. Sun, “Grouping Strategies for Promoting Image Quality of Watermarking on the Basis of Vector Quantization”, Journal of Visual Communication and Image Representation, Vol. 12, No. 1, pp. 49–55, 2010.
[12]C. C. Chang, P. Y. Lin, J. S. Yeh, “Preserving Robustness and Removability for Digital Watermarks using Subsampling and Difference Correlation”, Information Sciences, Vol. 179, No. 13, pp. 2283–2293, 2009.
[13]C. C. Chang, K. F. Hwang, and M. S. Hwang, “Robust Authentication Scheme for Protecting Copyrights of Images and Graphics”, IEE Proceedings-Vision, Images and Signal Processing, Vol. 149, No. 1, pp. 43–50, 2002.
[14]F. Y. Shih and Y. T. Wu, “Robust Watermarking and Compression for Medical Images based on Genetic Algorithm”, Information Sciences, Vol. 175, No. 3, pp. 200–216, 2005.
[15]E. Yen and K. S. Tsai, “HDWT-based Grayscale Watermark for Copyright Protection”, Expert Systems with Applications, Vol. 35, No. 1-2, pp. 301–306, 2008.
[16]W. Lu, H. Lu, and F. L. Chung, “Robust Digital Image Watermarking Based on Subsampling”, Applied Mathematics and Computation, Vol. 181, No. 2, pp. 886–893, 2006.
[17]J . Tian, “Reversible Data Embedding Using A Difference Expansion,” IEEE Trans. Circuits Systems Video Technology, Vol. 13, No. 8, pp. 890–896, 2003.
[18]A. M. Alattar, “Reversible Watermark Using The Difference Expansion of a generalized integer transform,” IEEE Trans. Image Processing, Vol. 13, No. 8, pp. 1147–1156, 2004.
[19]L. Kamstra and H. J. A. M. Heijmans, “Reversible Data Embedding into Images Using Wavelet Techniques and Sorting,” IEEE Trans. Image Process Processing, Vol. 14, No. 12, pp. 2082–2090, 2005.
[20]D. M. Thodi and J. J. Rodríguez, “Expansion Embedding Techniques for Reversible Watermarking,” IEEE Trans. Image Processing, Vol. 16, No. 3, pp. 721-730, 2007.
[21]C. C. Lee, H. C. Wu, C. S Tsai, and Y. P. Chu, “Adaptive Lossless Steganographic Scheme with Centralized Difference Expansion”, Pattern Recognition, Vol. 41, No. 6, pp. 2097–2106, 2008.
[22]S. Lee, C.D. Yoo, and T. Kalker, “Reversible Image Watermarking Based on Integer to Integer Wavelet Transform,” IEEE Trans. Information Forensics and Security, Vol. 2, No. 3, pp. 321–330, 2007.
[23]H. Luo, F. X. Yu, H. Chen Z. L. Huang, H. Li, and P. H. Wang, “Reversible Data Hiding Based on Block Median Preservation”, Information Sciences, Vol. 181, No. 2, pp. 308–328, 2011.
[24]H. W. Tseng and C. P. Hsieh, “Prediction-based Reversible Data Hiding”, Information Sciences, Vol. 179, No. 14, pp. 2460–2469, 2009.
[25]C. F. Lee, H. L. Chen, and H. K. Tso, “Embedding Capacity Raising in Reversible Data Hiding based on Prediction of Difference Expansion”, Journal of Systems and Software, Vol. 83, No. 10, pp. 1864–1872, 2010.
[26]Z. Ni, Y. Q. Shi, N. Ansari, and W. Su, “Reversible Data Hiding,” IEEE Trans. Circuits Systems Video Technology, Vol. 16, No. 3, pp. 354–362, 2006.
[27]P. Y. Tsai, Y. C. Hu, and H. L. Yeh, “Reversible Image Hiding Scheme Using Predictive Coding and Histogram Shifting”, Signal Processing, Vol. 83, No 6, pp. 1129–1143, 2009.
[28]X. Gao, L. An, X. Li, and D. Tao, “Reversibility Improved Lossless Data Hiding”, Digital Signal Processing, Vol. 89, No. 10, pp. 2053–2065, 2009.
[29]Y. C. Li, C. M. Yeh, and C. C. Chang, “Data Hiding Based on the Similarity Between Neighboring Pixels with Reversibility”, Digital Signal Processing, Vol. 20, No. 4, pp. 1116–1128, 2010.
[30]C. H. Yang and M. H. Tsai, “Improving Histogram-Based Reversible Data Hiding by Interleaving Predictions”, IET Image Processing, Vol. 4, No. 4, pp. 223–234, 2010.
[31]W. Hong, T. S. Chen, and C. W. Shiu, “Reversible Data Hiding for High Quality Images using Modification of Prediction Errors”, Journal of Systems and Software, Vol. 82, No. 11, pp. 1833–1842, 2009.
[32]K. S. Kim, M. J. Lee, H. Y. Lee, and H. K. Lee, “Reversible Data Hiding Exploiting Spatial Correction Between Sub-sampled Images” Pattern Recognition, Vol. 42, No. 11, pp. 3083–3096, 2009.
[33]C. C. Lin, W. L. Tai, and C. C. Chang, “Multilevel Reversible Data Hiding Based on Histogram Modification of Difference Images”, Pattern Recognition, Vol. 41, No. 12, pp. 3582–3591, 2008.
[34]Z. T. Zeng, L. E Ping, and X. Z Pan, “A Lossless Robust Data Hiding Scheme”, Pattern Recognition, Vol. 43, No. 4, pp. 1656–1667, 2010.
[35]R. Z. Wang, C. F Lin, and J. C. Lin, “Image Hiding by Optimal LSB Substitution and Genetic Algorithm,” Pattern Recognition, Vol. 34, No. 3, pp. 671–683, 2000.
[36]C. K. Chan and L. M. Chen, “Hiding Data in Images by Simple LSB Substitution,” Pattern Recognition, Vol. 37, No. 3, pp. 469–474, 2004.
[37]H. Xu, J. J. Wang, and H. J. Kim, “Near-Optimal Solution to Pair-Wise LSB Matching via An Immune Programming Strategy,” Information Sciences, Vol. 180, No. 88, pp. 1210-1217, 2010.
[38]C. H. Yang, “Inverted Pattern Approach to Improve Image Quality of The Information Hiding by LSB Substitution,” Pattern Recognition, Vol. 9, No. 1, pp. 153-164, 2008.
[39]C. C. Chang, J. Y. Hsiao, and C. S. Chan, “Finding Optimal Least-Significant-Bit Substitution in Image Hiding by Dynamic Programming Strategy,” Pattern Recognition, Vol. 36, No. 7, pp. 1583–1595, 2003.
[40]C.H. Yang and S. J. Wang, “Weighted Bipartite Graph for Locating Optimal LSB Substitution for Secret Embedding,” Journal of Discrete Mathematical Sciences & Cryptography, Taru publications, India, Vol. 9, No. 1, pp. 153–164, 2006.
[41]C.C. Chang and H. W. Tseng, “A Steganographic Method for Digital Images Using Side Match,” Pattern Recognition Letters, Vol. 25, No. 12, pp. 1431–1437, 2004.
[42]D.C. Wu and W. H. Tsai, “A Steganographic Method for Images by Pixel-Value Differencing,” Pattern Recognition Letters, Vol. 24, No. 9-10, pp. 1613–1626, 2003.
[43]Y. R. Park, H. H. Kang, S. U. shin, and K. R. Kwon, “A Steganographic Scheme in Digital Images Using Information of Neighboring Pixels,” Advances in Natural Computing , Vol. 3612, pp. 962–967, 2005.
[44]C. H. Yang, C. Y. Weng, and S. J. Wang, “Capacity-raising Steganographic Using Multi-Pixel Differencing and Pixel-Value Shifting Operation,” Fundamental Informaticae, Vol. 98, No. 2-3, pp. 321–336, 2010.
[45]J. Fridrich, M. Goljan, and R. Du, “Reliable Detection of LSB Stegnography in Grayscale and Color Images,” In Proceeding of ACM Workshop on Multimedia and Security, pp. 27–30, 2001.
[46]A. D. Ker, “Steganalysis of LSB Matching in Grayscal Images,” IEEE Signal Processing Letters, Vol. 12, No. 6, pp. 441–444, 2005.
[47]A. D. Ker, “Steganalysis of Embedding in Two Least-Significant Bits,” IEEE Transaction on Information Forensics and Security, Vol. 2, No. 1, pp. 46–54, 2007.
[48]Steganography: A Few Tools to Discover Hidden Data, http://www.guillermito2.net/stegano/tools/index.html, accessible by June. 1st, 2010.
[49]H.C. Wu, N.I. Wu, C. S. Tsai, and M. S. Hwang, “Image Steganographic Scheme Based on Pixel-Value Differencing and LSB Replacement Methods,” IEE Proceedings-Vision, Images and Signal Processing, Vol. 152, No. 5, pp. 611–615, 2005.
[50]C. H. Yang, C. Y. Weng, and S. J. Wang, “Analyses of Pixel-Value Differencing Scheme with LSB Replacement in Steganography,” In Proceeding of International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 445–448, 2010.
[51]C. H. Yang, C. Y. Weng, H. K. Tso, and S. J. Wang, “A Data Hiding Scheme Using the Varieties of Pixel-Value Differencing in Multimedia Images,” The Journal of Systems and Software, Vol. 84, No. 3, pp. 669–678, 2011.
[52]H. F. Yang, X. M. Sun, and G. Sun, “A High Capacity Image Data Hiding Using Adaptive LSB Substitution,” Radio Engineering, Vol. 18, No. 4, pp. 509–516, 2009.
[53]C. H. Yang, C. Y. Weng, S. J. Wang, and H. M. Sun, “Adaptive Data Hiding in Edge Areas of Images with Spatial LSB Domain Systems,” IEEE Transaction on Information Forensics and Security, Vol. 3, No. 3, pp. 488–497, 2009.
[54]K. H. Jung, K. J. Ha, and K. Y. Yoo, “Image Data Hiding Method Based on Multi-Pixel Differencing and LSB Substitution Methods,” In Proceeding of International Conference Convergence and Hybrid Information Technology, pp. 353–358, 2008.
[55]C.M. Wang, N.I. Wu, C. S. Tsai, and M. S. Hwang, “A High Quality Steganography Method with Pixel-Value Differencing and Modulus Function, The Journal of Systems and Software, Vol. 81, No. 1, pp. 150–158, 2008.
[56]C. F. Lee and H. L. Chen, “A Novel Data Hiding Scheme Based on Modulus Function,” The Journal of Systems and Software, Vol. 83, No. 5, pp. 832–843, 2010.
[57]I. S. Lee and W. H. Tsai, “Data Hiding in Grayscale Images by Dynamic Program Based on A Human Visual Mode,” Pattern Recognition, Vol. 42, No. 7, pp. 1604–1611, 2009.
[58]X. Zhang and S. Wang, “Efficient Steganographic Embedding by Exploiting Modification Direction,” IEEE Communications Letters, Vol. 10, No. 11, pp. 781–783, 2006.
[59]K. H. Jung and K. Y. Yoo, “Improved Exploiting Modification Direction Method by Modulus Operation,” International Journal of Signal Processing Image Processing and Pattern, Vol. 2, No. 1, pp. 79–87, 2009.
[60]C. F. Lee, C. C. Chang, and K. H. Wang, “An Improvement of EMD Embedding Method for Large Payloads by Pixel Segmentation Strategy,” Image and Vision Computing, Vol. 26, No. 12, pp. 1670–1676, 2008.
[61]J. J. Wang, Y. T. Sun, H. A. Xu, K. K. Chen, H. J. Kim, and S. H. Joo, “An Improved Section-Wise Exploiting Modification Direction Method,” Signal Processing, Vol. 90, No. 11, pp. 2954–2964, 2010.
[62]H. J. Kim, C. Kim, Y. Choi, S. Wang, and X. Zhang, “Improved Modification Direction Methods,” Computers and Mathematics with Applications, Vol. 60, No. 2, pp. 319–325, 2010.
[63]C. F. Lee, Y. R. Wang, and C. C. Chang, “A Steganographic Method with High Embedding Capacity by Improving Exploiting Modification Direction,” In Processing of 3rd International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 497–501, 2007.
[64]W. M. Zhang, X. P. Zhang, and S. Z. Wang, “Twice Grid Colorings in Steganographic,” In Processing of 4th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 1301–1304, 2008.
[65]W. Zhang and X. Zhang, “Generalization of the ZZW Embedding Construction for Steganography,” IEEE Transactions on Information Forensics and Security, Vol. 4, No. 3, pp. 564–569, 2009.
[66]M. Kutter and F. A. P. Petitcolas, “A Fair Benchmark for Image Watermarking System,” In Processing of SPIE Conference on Security Watermarking of Multimedia Contexts, pp. 226–239, 1999.
[67]C. H. Yang, C. Y. Weng, S. J. Wang, and H. M. Sun, “Varied PVD+LSB Evading Detection Programs to Spatial Domain in Data Embedding Systems,” Journal of Systems and Software, Vol. 83, No. 10, pp. 1635-1643, 2010.
[68]A. Ker, “Steganalysis of LSB Matching in Grayscale Images,” IEEE Signal Processing Letters, Vol. 12, No. 6, pp. 441-444, 2005.
[69]C. C. Chang, J. C. Chuang, and Y. C. Hu, “Spatial Domain Image Hiding Scheme using Pixel-Value Differencing,” Fundamenta Informaticae, Vol. 70, No. 3, pp. 171-184, 2006.
[70]C. C. Chang, T. S. Chen, and L. Z. Chung, “A Steganographic Method Based upon JPEG and Quantization Table Modification,” Information Sciences, Vol. 141, No. 1-2, pp. 123-138, 2002.
[71]M. Iwate, K. Miyake, and A. Shiozaki, “Digital Steganography Utilizing Features of JPEG Images,” IEICT Transactions on Fundamentals, Vol. E87-A, No. 4, pp. 929-936, 2004.
[72]G. Xuan, J. Zhu, J. Chen, Y. Q. Shi, Z. Ni, and W. Su, “Distortionless Data Hiding Based on Integer Wavelet Transform,” Electronics Letters, Vol. 38, No. 25, pp. 1646-1648, 2002.
[73]S. Kumar and S. K. Muttoo, “Data Hiding Techniques Based on wavelet-lkie Transform and Complex Wavelet Tranforms,” In Processing of International Symposium on Intelligence Information Processing and Trusted Computing, pp. 1–4, 2010.
[74]L. Zhang, H. Wang, and R. Wu, “A High-capacity Steganography Scheme for JPEG2000 Baseline System,” IEEE Transactions on Image Processing, Vol. 18, No. 8, pp. 1797-1803, 2009.
[75]X.P. Zhang, K. Li, and X. Wang, “A Novel Look-up Table Design Method for Data Hiding with Reduced Distortion,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 18, No. 6,pp. 769-776, 2008.
[76]Y. Linde, A. Buzo, and R. Gray, “An Algorithm for Vector Quantizer Design,” IEEE Transactions on Communications, Vol. 28, No. 1, pp. 84-95, 1980.
[77]C.H. Hsieh and J.C. Tsai, “Lossless compression of VQ index with search-order coding,” IEEE Transactions on Image Processing, Vol. 5, No. 11, pp. 1579-1582, 1996.
[78]C.C. Chen and C.C. Chang, “High Capacity SMVQ-based Hiding Scheme using Adaptive Index,” Signal Processing, Vol. 90, No. 7, pp. 2141-2149, 2010.
[79]C.C. Lin, S.C. Chen, and N.L. Hsueh, “Adaptive Embedding Techniques for VQ-compressed Images,” Information Sciences, Vol. 179, No. 1-2, pp. 140-149, 2009.
[80]C.C. Lee, W.H. Ku, and S.Y. Huang, “A New Steganographic Scheme Based on Vector Quantisation and Search-order Coding,” IET Image Processing, Vol. 3, No. 4, pp. 243-248 2009.
[81]W.J. Chen and W.T. Huang, “VQ Indexes Compression and Information Hiding using Hybrid Lossless Index Coding,” Digital Signal Processing, Vol. 19, No. 3, pp. 433-443, 2009.
[82]S.C. Shie and S.D. Lin, “Data Hiding Based on Compressed VQ Indices of Images,” Computer Standards & Interfaces, Vol. 31, No. 6, pp. 1143-1149, 2009.
[83]C.F. Lee, H.L. Chen, and S.H. Lai, “An Adaptive Data Hiding Scheme with High Embedding Capacity and Visual Image Quality Based on SMVQ Prediction Through Classification Codebooks,” Image and Vision Computing, Vol. 28, No. 8, pp. 1293-1302, 2010.
[84]L.S. Chen and J.C. Lin, “Steganography Scheme Based on Side Match Vector Quantization,” Optical Engineering, Vol. 49, No. 3, pp. 0370081-0370087,2010.
[85]Y.C. Hu, “High-capacity Image Hiding Scheme Based on Vector Quantization,” Pattern Recognition, Vol. 39, No. 9, pp. 1715-1724, 2006.
[86]C. C. Chang, W. C. Wu, and Y. H. Chen, “Joint coding and Embedding Techniques for Multimedia Images,” Information Sciences, Vol. 178, No. 18, pp. 3543-3556, 2008.
[87]Z. Wang and A. C. Bovik, “Modern Image Quality Assessment,” Synethesis Lectures on Image, Video and Multimedia Processing, Vol. 2, No. 1, pp. 1-156, 2006.
[88]Q. Huynh-Thu and M. Ghanbar, “Scope of Validity of PSNR in Image/Viedo Quality Assessment,” Electronics Letters, Vol. 44, No. 13, pp. 800-801, 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top