跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 13:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游承儒
研究生(外文):Yu, Chen-Ju
論文名稱:高壓氮化鋁鎵/氮化鎵高電子遷移率電晶體製作與分析
論文名稱(外文):The Fabrication and Analysis of High Voltage AlGaN/GaN HEMT
指導教授:黃智方
指導教授(外文):Huang, Chih-Fang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:64
中文關鍵詞:高崩潰電壓氮化鋁鎵/氮化鎵佈值隔離高電子遷移率電晶體
外文關鍵詞:High Breakdown voltageAlGaN/GaNImplant IsolationHEMT
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1630
  • 評分評分:
  • 下載下載:237
  • 收藏至我的研究室書目清單書目收藏:0
在此篇論文中,我們藉由鋅元素多重能量佈植隔絕的方式,在矽基板上製作了氮化鋁鎵/氮化鎵高電子遷移率電晶體,有效降低元件之間漏電流及內部漏電流,當元件通道長度3μm,閘極至汲極長度7μm,獲得不錯的電流開關比(Ion/Ioff=6.2×106)及次臨限斜率(St=112 mV/dec)。且利用閘極場平板來降低閘極區域峰值電場,達到更優越的崩潰電壓。量測結果顯示,通道長度3μm,閘極至汲極長度40μm,閘極場平板長度2μm的元件,最高崩潰電壓約為2300V,而此元件的導通電阻為14.8mΩ-cm2,其評比效能BFOM值為372.8 MW/cm2。最佳評比效能BFOM值的元件為664 MW/cm2,其崩潰電壓為1609V,通道長度3um,閘極至汲極長度20μm,閘極場平板長度2μm的元件,導通電阻為3.9 mΩ.cm2。
In this research, AlGaN/GaN high electron mobility transistors were fabricated on a silicon substrate. Isolation between devices was achieved by multi-energy Zn implantation, significantly suppressing the leakage current within and between devices. The on/off current ratio for the device with 3μm Lch and 7μm LGD is 6.2×106 and the subthreshold slope is 112 mV/dec. Gate field plates were applied in order to obtain high breakdown voltages. Measurements show that, for the device with 3μm Lch, 40μm LGD, and 2μm gate field plate, the maximum breakdown voltage is around 2300 V, while the on-resistance is 14.8mΩ-cm2. The BFOM is 372.8M W/ cm2 for this device. For the device with the highest BFOM of 664MW/cm2, the breakdown voltage is 1609 V and the on-resistance is 3.9 mΩ.cm2. The channel length is 3μm, the gate to drain spacing is 20μm, and the gate field plate is 2μm.
目錄
中文摘要 I
Abstract II
致謝 III
目錄 IIV
圖目錄 VI
表目錄 IX


第一章 序論
1.1 前言-----------------------------------------------------------------------1
1.2 文獻回顧與研究動機--------------------------------------------------2
1.3 研究方向簡介與論文架構--------------------------------------------7

第二章 元件介紹與設計
2.1 氮化鋁鎵/氮化鎵材料介紹-----------------------------------------13
2.2 基板選擇---------------------------------------------------------------14
2.3 場平板結構------------------------------------------------------------15
2.4 保護層對氮化鋁鎵的影響------------------------------------------16
2.5 元件光罩設計---------------------------------------------------------16

第三章 元件製作
3.1高電壓AlGaN/GaN HEMT流程--------------------------------------23
3.2 元件磊晶結構-----------------------------------------------------------23
3.3蝕刻對準記號------------------------------------------------------------24
3.4歐姆接觸製作------------------------------------------------------------25
3.5元件隔離製作------------------------------------------------------------26
3.6保護層沉積---------------------------------------------------------------27
3.7閘極金屬及Pad金屬----------------------------------------------------28
第四章 元件量測結果分析
4.1電流-電壓量測與分析---------------------------------------------------36
4. 2導通電阻和接觸電阻分析---------------------------------------------38
4. 3元件對溫度變化分析---------------------------------------------------39
4. 4 current collapse及切換特性-------------------------------------------40
4. 5元件崩潰電壓量測------------------------------------------------------41

第五章 結論與未來工作
5.1結論與未來工作----------------------------------------------------------60

參考文獻------------------------------------------------------------------------61

圖目錄

圖1.1 重疊式閘極結構圖------------------------------------------------------8
圖1.2 多層場平面(a)結構圖(b)電場分佈圖---------------------------------9
圖1.3 AlN passivation and via-holes through substrate結構--------------10
圖1.4Fluoride Plasma Treatment device(a) Treatment前能帶圖
(b)Treatment後能帶圖(c)結構圖----------------------------------10
圖1.5 p-type GaN gate contact 結構-----------------------------------------11
圖1.6堀入式閘極結構---------------------------------------------------------11
圖1.6 Recessed MIS Gate結構------------------------------------------------12
圖2.1 Wurtzite結構圖----------------------------------------------------------19
圖2.2 GaN Ga-face晶格結構圖----------------------------------------------19
圖2.3 壓電極化效應示意圖--------------------------------------------------20
圖2.4 場平板電場分佈圖-----------------------------------------------------20
圖2.5 不同PECVD RF功率對電流衰退比--------------------------------21
圖2.6 (a)光罩佈局設計(b)正式元件layout圖(c)元件流程圖-----------21
圖3.1高壓AlGaN/GaN HEMT製作流程圖--------------------------------31
圖3.2高壓元件不同燒結溫度對接觸電阻作圖---------------------------33
圖3.3高壓元件 RTA升溫曲線圖--------------------------------------------34
圖3.4模擬佈植深度及濃度---------------------------------------------------34
圖3.5片電阻對不同PECVD電漿功率作圖-------------------------------35
圖3.6 高壓元件完成圖--------------------------------------------------------35
圖4.1 佈植隔離與mesa隔離漏電流比較圖-------------------------------45
圖4.2 LG=3μm LGD=7μm 時 Ids-Vd特性曲線圖-------------------------45
圖4.3 LG=5μm LGD=7μm 時 Ids-Vd特性曲線圖-------------------------46
圖4.4 LG=3μm LGD=7μm時IDS-VGS特性曲線圖-------------------------46
圖4.5 LG=5μm LGD=7μm時IDS-VGS特性曲線圖-------------------------47
圖4.6高壓元件臨界電壓分佈圖---------------------------------------------47
圖4.7不同LG的 ID,max及Gm比較圖-----------------------------------------48
圖4.8LG=3μm及LGD=7μm的 I對VGS作圖-----------------------------48
圖4.9GaN/AlGaN/GaN結構與AlGaN/GaN結構能帶圖----------------49
圖4.10不同LGD長度導通電阻分佈圖--------------------------------------49
圖4.11TLM量測元件金屬接觸電阻----------------------------------------50
圖4.12比較不同溫度時的導通電阻-----------------------------------------50
圖4.13比較不同溫度時的飽和電流-----------------------------------------51
圖4.14比較不同溫度時的轉移電導-----------------------------------------51
圖4.15比較不同溫度時的IDS、IGS -------------------------------------------52
圖4.16蕭基能障對溫度的關係-----------------------------------------------53
圖4.17current collapse測試---------------------------------------------------53
圖4.18切換特性量測及負載線示意圖--------------------------------------54
圖4.19f=100KHz Duty=20%時的切換特性--------------------------------55
圖4.20高壓量測系統示意圖--------------------------------------------------55
圖4.21isolation 崩潰測試比較圖--------------------------------------------56
圖4.22崩潰電壓對不同LGD作圖--------------------------------------------56
圖4.23元件崩潰的情況--------------------------------------------------------57
圖4.24元件閘極區域剖面圖 ------------------------------------------------57
圖4.25LGD=40μm崩潰時的IDS及IGS --------------------------------------58
圖4.26崩潰電壓對不同LGFP關係--------------------------------------------58
圖4.27崩潰電壓對不同LDFP關係--------------------------------------------59

[1] T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 1481–1483, Aug. 1994.
[2] J. Liu, Y. G. Zhou, R. M. Chu, Y. Cai, K. J. Chen, and K. M. Lau, “Highly linear Al0.3Ga0.7N/Al0.05Ga0.95N/GaN composite-channel HEMTs,” IEEE Electron Device Lett., vol. 26, no. 3, pp. 145–147, Mar. 2005.
[3] M. Kanamura, T. Kikkawa, T. Iwai, K. Imanishi, T. Kubo, and K. Joshin, “An over 100 W n-GaN/n-AlGaN/GaN MIS-HEMT power amplifier for wireless base station applications, ” in Proc. Tech. Dig. Int. Conf. Electron Devices, Washington, DC, Dec. 4–7, pp. 572–575, 2005.
[4] E. Frayssinet, W. Knap, P. Lorenzini, N. Grandjean, J. Massies, C. Skierbiszewski, T. Suski, I. Grzegory, S. Porowski, G. Simin, X. Hu, M. Asif Khan, M. S. Shur, R. Gaska, and D. Maude, “High electron mobility in AlGaN/GaN heterostructures grown on bulk GaN substrates, ” Applied Physics Lett., vol.77, no. 16, Oct. 2000.
[5] A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter. “Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlGaN heterojunctions,” Applied Physics Lett., vol.60, no. 24, pp. 3027–9, 1992.
[6] Y. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors, ” Applied Physics Lett., 69, pp. 1438-1440, 1996.
[7] S. Yoshida , H. Ishii, J. Li, D. Wang and Masakazu, “A high-power AlGaN/GaN heterojunction field-effect transistor,” Solid-State Electronics, vol. 47, Issue 3, pp. 589–592, Mar. 2003.
[8] N. Q. Zhang, S. Keller,G. Parish, S. Heilman, S. P. DenBaars, and U. K. Mishra, “High breakdown GaN HEMT with overlapping gate structure,” IEEE Electron Device Lett., vol. 21, no. 9, pp. 421–423, Sep. 2000.
[9] H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, U. K. Mishra, “High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates,” IEEE Electron Device Letters, vol 25, no 4, pp 161-163, April 2004.
[10] Y. Dora, “Understanding material and process limits for high breakdown voltage AlGaN/GaN HEMTs,” PhD thesis, University of California, Santa Barbara, 2006.
[11] Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. DenBaars, and U. K. Mishra “High Breakdown Voltage Achieved on AlGaN/GaN HEMTs With Integrated Slant Field Plates,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 713–715, Sep. 2006.
[12] Y. Uemoto, D. Shibata, M. Yanagihara, H. Ishida, H. Matsuo, S. Ngai, N. Batta, M. Li, T. Ueda, T. Tanaka, and D. Ueda, “8300V Blocking Voltage AlGaN/GaN Power HFET with Thick Poly-AlN Passivation,” IEDM Tech Dig., pp. 861-864 , 2007.
[13] P. Moens, G. Van den bosch, “Reliability assessment of integrated power transistors: Lateral DMOS versus vertical DMOS,” Microelectronics Reliability, vol. 48, no.8-9, pp.1300-1305, 2008.
[14] J. Shi, Y. C. Choi, M. Pophristic, M. G. Spencer, and L. F. Eastman, “High breakdown voltage AlGaN/GaN heterojunction field effect transistors on sapphire,” Physics Solid-State, c.5, No. 6, pp. 2013–2015. , 2008.
[15] S. Yagi, M. Shimizu, M. Inada, Y. Yamamoto, G. Piao, H. Okumura, Y. Yano, N. Akutsu, H. Ohashi, “High breakdown voltage AlGaN/GaN MIS–HEMT with SiN and TiO2 gate insulator,” Solid-State Electronics, vol.50, pp. 1057–1061, 2006.
[16] Y. Cai, Y. G. Zhou, and K. M. Lau, “Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode,” IEEE Electron Device Lett., vol. 53, no. 9, pp. 2207–2215, Sep. 2006.
[17] X. Hu, G. Simin, J. Yang, M. Asif Khan, R. Gaska and M.S. Shur, “Enhancement mode AIGaN/GaN HFET with selectively grown pn junction gate,” IEEE Electron Lett., vol. 36, no. 8, pp. 753–754, April. 2000.
[18] T. Fujii, S. Nakamura, K. Mizuno, R. Nega, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “High drain current and low on resistance normally-off-mode AlGaN/GaN junction HFETs with a p-type GaN gate contact,” Physics Solid-State (c) 5, no. 6, pp. 1906–1909, 2008.
[19] W. B. Lanford, T. Tanaka, Y. Otoki, and I. Adesid, “Recessed-gate enhancement-mode GaN HEMT with high threshold voltage,” IEEE Electron. Lett., vol. 41, no. 7, pp. 449–450, Mar. 2005.
[20] T. Oka, and T. Nozawa, “AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications,” IEEE Electron Device Lett, vol. 29, no. 7, pp. 668–670, July. 2008.
[21] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-Heating in High-Power AlGaN-GaN HFET’s,” IEEE Electron Device Lett, vol. 19, no.3, pp. 89–91, Mar. 1998.
[22] W.S. Tan, P.A. Houston, G. Hill, R.J. Airey, and P.J. Parbook, “Influence of Dual-Frequency Plasma-Enhanced Chemical-Vapor Deposition Si3N4 Passivation on the Electrical Characteristics of AlGaN/GaN Heterostructure Field-Effect Transistors,” Journal of Electronic Materials, vol. 33, no.5 , pp. 400–407, 2004.
[23] T. Oishi, N. Miura, M. Suita, T. Nanjo, Y. Abe, T. O. H. Ishikawa, T. Egawa, and T. Jimbo, “Highly resistive GaN layers formed by ion implantation of Zn along the c axis,” Journal of Applied Physics, vol. 94, no.3 , pp. 1662–1666, Aug. 2003.
[24] S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, “Surface passivation effects on AlGaN/GaN High-electron-mobility transistors with SiO2, Si3N4 , and silicon oxynitride” Applied Physics Letters, vol. 84, pp. 613-615, 2004
[25] J. W. Chung, J. C. Roberts, E. L. Piner, and T. Palacios, “Effect of Gate Leakage in the Subthreshold Characteristics of AlGaN/GaN HEMTs,” IEEE Electron Device Lett, vol. 29, no.11 , pp. 1196–1198, Nov. 2008.
[26] J.Y. Shiu, J.C. Huang, V. Desmaris, C.T. Chang, C.Y. Lu, K. Kumakura, T. Makimoto, H. Zirath, N. Rorsman, and E.Y. Chang, “Oxygen Ion Implantation Isolation Planar Process for AlGaN/GaN HEMTs,” IEEE Electron Device Lett, vol. 28, no.6 , pp. 476–478, Jun. 2007.
[27] K. Nomoto, T. Tajima, T. Mishima, M. Satoh, and T. Nakamura, “Remarkable Reduction of On-Resistance by Ion Implantation in GaN/AlGaN/GaN HEMTs With Low Gate Leakage Current,” IEEE Electron Device Lett, vol. 28, no.11 , pp. 476–478, Nov. 2007.
[28] N. Maeda, K. Tsubaki, T. Saitoh, and N. Kobayashi, “High-temperature electron transport properties in AlGaN/GaN heterostructures”, Applied Physics Letters, vol. 79, no.11, pp. 1634-1636, Sep. 2001.
[29] T. Mizutani, Y. Ohno, M. Akita, S. Kishimoto, and K. Maezawa, “A Study on Current Collapse in AlGaN/GaN HEMTs Induced by Bias Stress,” IEEE Transactions on Electron Devices, vol. 50, no.10 , pp. 2015–2020, Oct. 2003.
[30] M. A. Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrates,” Applied Physics Letters, vol. 77, no. 9, pp. 1339–1341, Aug. 2000.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 具快速逆向回復時間之矽基600伏氮化鋁鎵/氮化鎵蕭基二極體
2. 氮化鋁鎵/氮化鎵高電子遷移率場效電晶體元件結構與鈍化方式對高頻率及高功率之特性分析
3. 矽基板之氮化鋁鎵/氮化鎵高電子遷移率電晶體之研究
4. 表面鈍化對氮化鋁鎵/氮化鎵高電子遷移率電晶體之影響
5. 利用有機金屬化學氣相沉積成長高功率氮化鋁鎵/氮化鎵高電子遷移率電晶體結構於藍寶石基板
6. 結合表面鈍化層與後退火技術增強氮化鎵金-氧-半高電子遷移率電晶體之性能
7. 氮化鋁鎵/氮化鎵高電子遷移率電晶體非線性特性之研究
8. 氮化鋁中間層對氮化鋁鎵/氮化鎵高電子遷移率電晶體的特性影響
9. Reliability Study of AlN Passivation Effects on AlGaN/GaN HEMT Using Fully-Coupled Self-Consistent Electro-Thermo-Mechanical Analysis
10. 浮動蕭特基金屬線應用在高頻氮化鋁鎵/氮化鎵高電子遷移率電晶體之製作與分析
11. 具Γ型閘極GaN元件之研究
12. 研究藉由氧化鋁為閘極絕緣層來改善成長於矽基板上之氧化鋁鎵/氮化鎵高電子遷移率電晶體之線性度
13. 一種簡易的氧化製程製作具鈍化層和金氧半結構之氮化鋁鎵/氮化鎵高電子遷移率電晶體
14. 以電漿輔助式分子束磊晶成長應用於高電子遷移率電晶體之氮化鋁鎵/氮化鎵異質結構
15. 利用過氧化氫對氮化鋁鎵/氮化鎵高電子遷移率電晶體鈍化處理之研究
 
1. 高頻及高功率氮化鋁鎵/氮化鎵高電子遷移率電晶體製作與分析
2. 高頻氮化鋁鎵/氮化鎵與氮化鋁銦/氮化鎵高電子遷移率電晶體之製作與分析
3. 不同隔離方式與不同種磊晶參數對高壓氮化鋁鎵/氮化鎵高電子遷移率電晶體的影響
4. 氮化鋁鎵/氮化鎵高電子移導率電晶體製作於矽基板與藍寶石基板之特性比較與應用電路
5. 電場板技術在氮化鋁鎵/氮化鎵高電子移導率場效電晶體之研製與應用
6. 利用閘極掘入方式製作增強型高截止電壓氮化鋁鎵/氮化鎵/氮化鋁鎵金屬-絕緣體-半導體高電子遷移率電晶體之研究
7. 氮化鋁鎵/氮化鎵高電子遷移率場效電晶體元件結構與鈍化方式對高頻率及高功率之特性分析
8. 浮動蕭特基金屬線應用在高頻氮化鋁鎵/氮化鎵高電子遷移率電晶體之製作與分析
9. 利用場效電板改善氮化鋁鎵/氮化鎵高電子遷移率電晶體高功率元件特性與可靠性之研究
10. 垂直式AlGaN/GaN HEMT元件特性分析
11. 使用氮化鎢閘極之氮化鋁鎵/氮化鎵高電子遷移率電晶體之高溫應用
12. PECVD氮化矽閘極介電層之氮化鋁鎵/氮化鎵高電子遷移率電晶體特性
13. 氮化鋁鎵/氮化鎵高電子遷移率功率電晶體應用於切換式直流對直流升壓轉換器之研究
14. 以光學微影步進機製作高功率之氮化鋁鎵/氮化鎵高電子遷移率電晶體
15. 新式增強型氮化鋁鎵/氮化鎵異質接面場效應電晶體研製及其在微波電路之應用