跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/03/16 12:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳曉翔
研究生(外文):Tan, Siew Seong
論文名稱:高效能CMOS微機電加速度計系統晶片設計
論文名稱(外文):Design of High-performance CMOS MEMS Accelerometer SoC's
指導教授:徐永珍徐永珍引用關係
指導教授(外文):Hsu, Klaus Y. –J.
口試委員:葉哲良盧向成江雨龍劉致為徐永珍
口試日期:2011-6-10
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:121
中文關鍵詞:加速度計
外文關鍵詞:accelerometer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:422
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究針對互補式金氧半導體微機電系統(CMOS MEMS)電容式加速度計提出創新的設計概念,以期達到高敏感度、低噪聲、及熱穩定之設計。一個於標準的0.35 μm CMOS製程中實現的創新微機電製程被提出,用以整合了一熱穩定之微機電加速度偵測器結構與一斬波穩零(Chopper Stabilization)電路。實驗結果不僅符合要求,所呈現出來的效能亦優於目前已發表的文獻。
熱穩定的效果係藉由在多層薄膜(multi-layer)微機電結構下結合一層厚的單晶矽(thick single-crystal silicon)來實踐,此高深寬比的多層膜微機電結構因包含一層厚的單晶矽而具有對殘留應力及溫度變化不敏感的特性。此外,本微機電製程避免了在乾蝕刻(dry-etching)時的電荷損害的問題,因此在微機電製程後,並未在樣品中發現因電荷損害而導致漏電流的現象。除此之外,本微機電製程也降低了單晶矽膜的切底(undercut)現象。
本研究中之斬波穩零電路係用以偵測互補式金氧半導體微機電系統電容式加速度偵測器之訊號,其設計強調於控制噪聲、結構偏移量、及電路輸入端之直流偏压。其中,斬波穩零電路與電容式加速度偵測器結構間之直流偏压問題已特別被討論,並且提出一個有效的解決方法。
本論文實現了一個CMOS MEMS電容式加速度計單晶片。實驗結果顯示其中的電路具有良好的噪声效能、有效的補償結構的偏移量、並穩定了電路輸入端之直流偏压。加速計的敏感度為595 mV g-1,背景噪聲為50 μg Hz-1/2,對應等效電容背景噪聲為0.024 aF Hz-1/2。在0 oC 到70 oC間,0-g下的加速計之電壓輸出溫度係數為1 mV oC-1,對應等效加速度的溫度變異為1.68 mg oC-1。

This thesis proposes a design concept to achieve high-sensitivity, low-noise, and thermally stable CMOS MEMS capacitive accelerometers. A novel process was demonstrated with a capacitive accelerometer, which contains a thermally stable MEMS sensor and an on-chip CMOS sensing circuit with chopper stabilization scheme, in 0.35 μm CMOS technology. Good performance was accomplished. It is superior to the results in other published works.
The thermal stability of the accelerometer was achieved by forming a thick single-crystal silicon (SCS) layer at the bottom of the multi-layer MEMS structure. A novel post-CMOS process was proposed for this purpose. The resultant MEMS structures by using this method have high aspect ratios and show the property of being insensitive to residual stress and temperature variation. Moreover, the proposed process avoids the charge damage problem usually encountered during dry-etching. No leakage current due to charge damage was ever observed in the sample chips. The proposed process also led to minimal undercut of the SCS layer after the MEMS structure release.
A sensing circuit with chopper stabilization scheme for CMOS MEMS capacitive accelerometers has been designed with emphasis on managing noise, sensor offset, and the DC bias at input terminals. The issue of DC bias was particularly addressed and an efficient, new method for obtaining reliable DC bias was proposed.
For demonstration, a CMOS MEMS accelerometer with the sensor fabricated by the proposed process and with an integrated on-chip sensing circuit was realized and characterized. Experimental results showed that the proposed circuit led to good noise performance, the random offset in the sensors was efficiently compensated, and the input DC bias voltage was well maintained. The sensitivity of the accelerometer is 595 mV g-1, and the overall noise floor is 50 μg Hz-1/2 which corresponds to an effective capacitance noise floor of 0.024 aF Hz-1/2. The zero-g temperature coefficient of the accelerometer output voltage is only 1 mV oC-1 in the temperature range from 0 oC to 70 oC, which corresponds to an effective acceleration variation rate of 1.68 mg oC-1.

ABSTRACT 1
摘 要 3
誌 謝 4
FIGURE CAPTIONS 5
TABLES LIST 9
Chapter 1 Introduction 12
1.1 Motivation 12
1.2 Review of Previous Works 14
1.3 Approach of Current Work 18
Chapter 2 Fundamentals of CMOS MEMS Micromachined Capacitive Accelerometers 20
2.1 Accelerometer Operation and Metrics 20
2.1.1 Mechanical Sensing Principle 20
2.1.2 Damping and Brownian Noise 24
2.1.3 Structural Curling and Its Compensation 31
2. 2 Capacitive Sensing and Electrostatic Actuation 35
2.2.1 Capacitive Sensing Principle 35
2.2.2 Electrostatic Actuation 40
2.2.3 Electrostatic Spring Forces 41
Chapter 3 Mechanical Design of CMOS MEMS Capacitive Accelerometers 44
3.1 Design of Robust CMOS MEMS Capacitive Accelerometers 47
3.1.1 Processes Variation and Its Compensation 47
3.1.2 Thermal Stress and Its Cancellation 53
3.1.3 Brownian Noise 58
3.2 Fabrication Process 61
Chapter 4 Electrical Design of CMOS MEMS Accelerometers 72
4.1 Chopper Stabilized Capacitive Readout Circuit 75
4.2 Circuit Design 77
4.2.1 Front-End Amplifier 77
4.2.2 DC Bias Stabilization 81
4.2.3 Demodulator 88
4.2.4 Instrumentation Amplifier and Low-Pass Filter 89
4.2.5 Offset Trimming Circuit 92
4.3 Low Noise Design Considerations 94
4.3.1 Mechanical (Brownian) Noise 94
4.3.2 Circuit Noise 96
Chapter 5 Experimental Results 101
5.1 Experiment System 104
5.2 Time-Domain Measurements 105
5.3 Noise Measurements 107
5.4 Offset Measurements 107
5.5 Thermal Stabilization Measurements 110
5.6 Comparison to Previous Work 114
Chapter 6 Conclusions 116
REFERENCES 117


[1] The MEMS Handbook, 2002.
[2] R. Dao, D. E. Morgan, H. H. Kries, and D. M. Bachelder, "Convective accelerometer and inclinometer," U. S. Patent No. 5 581 034, 1996.
[3] A. M. Leung, J. Jones, E. Czyzewska, J. Chen, and M. Pascal, "Micromachined accelerometer with no proof mass," in Electron Devices Meeting, 1997. IEDM '97. Technical Digest., International, 1997, pp. 899-902.
[4] V. Milanovic, E. Bowen, M. E. Zaghloul, N. H. Tea, J. S. Suehle, B. Payne, and M. Gaitan, "Micromachined convective accelerometers in standard integrated circuits technology," Applied Physics Letters, vol. 76, pp. 508-510, 2000.
[5] G. A. MacDonald, "A review of low cost accelerometers for vehicle dynamics," Sensors and Actuators A: Physical, vol. 21, pp. 303-307, 1990.
[6] Z. Gang, X. Huikai, L. E. de Rosset, and G. K. Fedder, "A lateral capacitive CMOS accelerometer with structural curl compensation," in Micro Electro Mechanical Systems, 1999. MEMS '99. Twelfth IEEE International Conference on, 1999, pp. 606-611.
[7] H. Luo, G. Zhang, L. R. Carley, and G. K. Fedder, "A post-CMOS micromachined lateral accelerometer," Journal of Microelectromechanical Systems, vol. 11, pp. 188-195, Jun 2002.
[8] G. K. Fedder, S. Santhanam, M. L. Reed, S. C. Eagle, D. F. Guillou, M. S. C. Lu, and L. R. Carley, "Laminated high-aspect-ratio microstructures in a conventional CMOS process," in Micro Electro Mechanical Systems, 1996, MEMS '96, Proceedings. 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems'. IEEE, The Ninth Annual International Workshop on, 1996, pp. 13-18.
[9] X. Huikai and G. K. Fedder, "A CMOS z-axis capacitive accelerometer with comb-finger sensing," in Micro Electro Mechanical Systems, 2000. MEMS 2000. The Thirteenth Annual International Conference on, 2000, pp. 496-501.
[10] L. Parameswaran, C. Hsu, and M. A. Schmidt, "A merged MEMS-CMOS process using silicon wafer bonding," Electron Devices Meeting, pp. 613-616, 1995.
[11] Q. Hongwei and X. Huikai, "Process Development for CMOS-MEMS Sensors With Robust Electrically Isolated Bulk Silicon Microstructures," IEEE/ASME J. Microelectromech. Syst., vol. 16, pp. 1152–1161, 2007.
[12] H. Shin, K. Noguchi, and C. Hu, "Modeling oxide thickness dependence of charging damage by plasma Processing," IEEE Electron Device Letters, vol. 14, pp. 509 - 511, 1993.
[13] S. Iyer, H. Lakdawala, G. K. Fedder, and T. Mukherjee, "Macromodeling temperature-dependent curl in cmos micromachined beams," in 4th Int. Conf. on Modeling and Simulation of Microsystems (Hilton Head Island, South Carolina, March 19-21, 2000).
[14] M. S. C. Lu, X. Zhu, and G. K. Fedder, "Mechanical Property Measurement of 0.5 um CMOS Microstructures," Proc. of the Material Research Society (MRS) 1998 Spring Meeting, Symposium on Microelectromechanical Structures for Materials Research (San Francisco, CA, Apr. 13-17, 1998).
[15] H. Lakdawala and G. K. Fedder, "Temperature stabilization of CMOS capacitive accelerometers," Journal of Micromechanics and Microengineering, vol. 14, pp. 559-566, Apr 2004.
[16] H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel, and G. K. Fedder, "Post-CMOS processing for high-aspect-ratio integrated silicon microstructures," Journal of Microelectromechanical Systems, vol. 11, pp. 93-101, Apr 2002.
[17] W. Jiangfeng, G. K. Fedder, and L. R. Carley, "A low-noise low-offset capacitive sensing amplifier for a 50 μg/√Hz monolithic CMOS MEMS accelerometer," Solid-State Circuits, IEEE Journal of, vol. 39, pp. 722-730, 2004.
[18] X. Jiang, F. Wang, M. Kraft, and B. E. Boser, "An integrated surface micromachined capacitive lateral accelerometer with 2 μg/√Hz resolution," in Solid-State Sensor, Actuator and Mircosystems Workshop, Hilton Head Island, SC, pp. 202-205, 2002.
[19] J. M. Tsai and G. K. Fedder, "Mechanical noise-limited CMOS-MEMS accelerometers," in Micro Electro Mechanical Systems, 2005. MEMS 2005. 18th IEEE International Conference on, 2005, pp. 630-633.
[20] H. Luo, G. K. Fedder, and L. R. Carley, "A 1 mG lateral CMOS-MEMS accelerometer," in Micro Electro Mechanical Systems, 2000. MEMS 2000. The Thirteenth Annual International Conference on, 2000, pp. 502-507.
[21] C. Lu, M. Lemkin, and B. E. Boser, "A monolithic surface micromachined accelerometer with digital output," Solid-State Circuits, IEEE Journal of, vol. 30, pp. 1367-1373, 1995.
[22] M. Lemkin and B. E. Boser, "A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics," Solid-State Circuits, IEEE Journal of, vol. 34, pp. 456-468, 1999.
[23] B. V. Amini and F. Ayazi, "A 2.5-V 14-bit ΣΔ CMOS SOI capacitive accelerometer," Solid-State Circuits, IEEE Journal of, vol. 39, pp. 2467-2476, 2004.
[24] Q. Hongwei, F. Deyou, and X. Huikai, "A Monolithic CMOS-MEMS 3-Axis Accelerometer With a Low-Noise, Low-Power Dual-Chopper Amplifier," Sensors Journal, IEEE, vol. 8, pp. 1511-1518, 2008.
[25] N. Yazdi and K. Najafi, "An interface IC for a capacitive μg accelerometer," in Solid-State Circuits Conference, 1999. Digest of Technical Papers. ISSCC. 1999 IEEE International, 1999, pp. 132-133.
[26] J. Bernstein, R. Miller, W. Kelley, and P. Ward, "Low-noise MEMS vibration sensor for geophysical applications," Journal of Microelectromechanical Systems, vol. 8, pp. 433-438, Dec 1999.
[27] P. O'Connor, G. Gramegna, P. Rehak, F. Corsi, and C. Marzocca, "CMOS preamplifier with high linearity and ultra low noise for X-ray spectroscopy," Nuclear Science, IEEE Transactions on, vol. 44, pp. 318-325, 1997.
[28] J. B. Starr, "Squeeze-film damping in solid-state accelerometers," in Solid-State Sensor and Actuator Workshop, 1990. 4th Technical Digest., IEEE, 1990, pp. 44-47.
[29] T.-R. Hsu, MEMS and MICROSYSTEMS Design and Manufacture, 2002.
[30] T. B. Gabrielson, "Mechanical-thermal noise in micromachined acoustic and vibration sensors," IEEE Trans. Electron Devices, vol. 40, pp. 903-909, 1993.
[31] S. S. Tan, C. Y. Liu, L. K. Yeh, Y. H. Chiu, and Klaus Y. J. Hsu, "A new process for CMOS MEMS capacitive sensors with high sensitivity and thermal stability," Journal of Micromechanics and Microengineering, vol. 21, p. 035005, 2011.
[32] S.-S. Tan, C.-Y. Liu, L.-K. Yeh, Y.-H. Chiu, M. S.-C. Lu, and K. Y. J. Hsu, "An Integrated Low-Noise Sensing Circuit With Efficient Bias Stabilization for CMOS MEMS Capacitive Accelerometers," IEEE Trans. Circuits Syst. I, Reg. Papers, 2011.
[33] X. Huikai and G. K. Fedder, "A CMOS z-axis capacitive accelerometer with comb-finger sensing," Micro Electro Mechanical Systems (The Thirteenth Annual International Conference on 23-27 Jan 2000), pp. 496 - 501.
[34] T. W. Clyne, "Residual stresses in surface coatings and their effects on interfacial debonding," Key Engineering Materials (Switzerland), vol. 116-117, pp. 307-330, 1996.
[35] W. Kuehnel, "Modeling of the mechanical behavior of a differential capacitor acceleration sensor," Sensors Actuators A, vol. A48, pp. 101-108, 1995.
[36] H. Kulah, C. Junseok, N. Yazdi, and K. Najafi, "A multi-step electromechanical ΔΣ converter for micro-g capacitive accelerometers," in Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International, 2003, pp. 202-488 vol.1.
[37] E. A. Phillip and R. H. Douglas, CMOS Analog Circuit Design, New York: Oxford ed., 2002.
[38] H. Darabi and A. A. Abidi, "Noise in RF-CMOS mixers: a simple physical model," Solid-State Circuits, IEEE Journal of, vol. 35, pp. 15-25, 2000.
[39] B. Razavi, Design of Analog CMOS Integrated Circuits, New York: McGraw-Hill ed., 2001.
[40] S. Chih-Ming, T. Ming-Han, L. Yu-Chia, and F. Weileun, "Implementation of a Monolithic Single Proof-Mass Tri-Axis Accelerometer Using CMOS-MEMS Technique," Electron Devices, IEEE Transactions on, vol. 57, pp. 1670-1679, 2010.
[41] W. F. Lee and P. K. Chan, "A Capacitive-Based Accelerometer IC Using Injection-Nulling Switch Technique," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, pp. 980–989, 2008.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top