跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 15:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張銘仁
研究生(外文):Chang, Ming-Jen
論文名稱:研究InGaAs/InAlAs異質結構的光電特性
論文名稱(外文):A Study of the Optoelectical Properties of InGaAs/InAlAs Heterostructure
指導教授:林叔芽
指導教授(外文):Lin, Shu-Ya
口試委員:黃智方謝文峰
口試日期:2011-7-15
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:45
中文關鍵詞:異質結構砷化鎵銦砷化鋁銦
外文關鍵詞:HeterostructureInGaAsInAlAs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本篇論文裡,我們研究異質結構量子井砷化鎵銦 /砷化鋁銦 ,範圍包含應變效應、自旋軌道偶合、自由載子遮蔽效應和調變摻雜場效量子井的光電特性,去觀察在各種情況下能帶結構的變化和造成的影響。
首先,我們對異質結構利用Luttinger-Kohn和Pikus-Bir理論模型來計算受應變的價帶能帶結構以及討論自旋軌道偶合影響,我們發現,當能量較低時,材料常數能量表面易受應變影響有較大的變形,而在自旋軌道能量會對重電洞和輕電洞能帶造成往上移。另外,我們利用自洽法同時解有限差分法建立的Schrödinger方程和Poisson’s方程,在考慮自由載子遮蔽效應,量子井內電場造成的傾斜度會減少,且靠近準費米能階的能帶會有明顯改變。最後,在n型調變摻雜的場效量子井,我們發現加大電場,躍遷能量會隨著增加,且當摻雜濃度增加,躍遷能量會跟著減少,光吸收係數也跟著變大,而躍遷能量為最大光吸收係數發生所在的能量,折射率變化也在這能量附近有劇烈的改變。



Abstract
In this paper, we study the electrical and optical properties of the InGaAs/InAlAs hetero-structure quantum wells, including strained effect, split-off bands, the effects of free-carrier screening and the doping effect. We have studied the change of the band structures and its consequences in different situations.
The Luttinger-Kohn and Pikus-Bir model is used to study the valence band structures and the influences of the split-off (SO) bands and strained effects to the quantum well. At lower energy, the constant- energy surfaces are more deformed by the strained effect. The HH and LH bands are pushed upward by the SO band. The self-consistent Schrödinger and Poisson’s equation are solved by the finite different method to study the quantum wells. Under the applied electric field the potential profiles are tilted. The screening of free carriers affects can cause the flattening of the potential profile in the quantum well and also cause the energy shift of states near quasi-Fermi level. In the study of the inter-subband optical absorption of the n-type modulation-doped quantum well, the transition energies are found to increase as the electric-field increases. The transition energies decrease and the absorption coefficients increase as the doping concentration increases. The maximum absorption coefficients occur at the transition energy and the refractive indices also change dramatically near the transition energy.

目錄
摘要 I
ABSTRACT II
目錄 III
第一章 緒論 1
第二章 理論與方法 3
2.1 LUTTINGER-KOHN 模型 3
2.2 受應變效應的塊材半導體 5
2.3 自旋軌道偶合效應 8
2.4 次能帶間的光吸收係數和折射率變化 9
2.5異質結構量子井 模型說明 11
2.6自洽(SELF-CONSISTENT)流程介紹 14
第三章 結果與討論 19
3.1塊材的應變討論 19
3.1-1 應變下的能帶與有效質量 19
3.1-2 二維和三維的價帶能帶結構 21
3.1-3自旋軌道偶合對受應變的量子井價帶結構的影響 29
3.2 場效量子井的自由載子遮蔽效應和價帶偶合關係 32
3.2-1 量子井導帶和價帶的位能 32
3.2-2 量子井價帶結構的平面色散關係 34
3.3 調變摻雜濃度和電場大小對電、光學性的探討 35
3.3-1 量子井能階和波函數討論 36
3.3-2 光吸收系數和折射率變化率 39
第四章 結論 43
參考文獻 44


參考文獻
[1] P. Vogl, J. Phys. Chem. Solids, Vol. 44, No. 5 , p. 365 (1983)
[2] H. Hirose, K. Ohata, T. Mizutani, T. Itoh, and M. Ogawa,
Proceedings of the International Symposium on GaAs and Re
lated Compounds, Karuizaua, Japan, Inst. Phys. Conf. Ser.
No. 79 (IOP, Bristol, 1985), p. 529.
[3] Y. Sugiyama, T. Inata, S. Muto, Y. Nakata, and S. Hiyamizu,
Appl. Phys. Lett. 52, 314 (1988).
[4] I, Suemune, T. Takeoka, Mo Yarnanishi, and Y. Lee, IEEE J. Quantum Electron. QE-22, 1900 (1986).
[5] T. Takeoka, M. Yamanishi, Yo Kan, and l. Suemune, Jpn. J. Appl. Physo 26, U17 (1987).
[6] D. Ahn and S. L. Chuang, "Model of the field-effect quantum-well laser with free carrier screening and valence band mixing," J. Appl. Phys., vol. 64, pp. 6143-6149, 1988.
[7] B. F. Levine, "Quantum well infrared photodetectors", J. Appl. Phys., vol. 74, pp.R1 - R81 , 1993.
[8] M. F. H. Schuurmans, and G. W. t Hooft, Phys. Rev. B 31,8041 (1985)
[9] S. L. Chuang, Physics of Optoelectronic Devices,Chap 4.3.2 (Wiley, New York, 1995).
[10] S. L. Chuang, Physics of Optoelectronic Devices,Chap 4.5.2 (Wiley, New York, 1995).
[11] G. L. Bir and G. E. Pikus, eds., Symmetry and Strain-Induced Effects in Semiconductors, Wiley, New York, 1974.
[12] Chao, Calvin Yi-Ping and Chuang, Shun Lien, “Spin-Orbit-Coupling Effects on the Valence-Band Structure of Strained Semiconductor Quantum Wells,” Physical Review B, Vol. 46, pp. 4110-4122, 1991.
[13] D. D. Coon and R. P. G. Karunasiri, Appt. Phys. Lett. 45,649 (1984).
[14] E. J. Roan and S. L. Chuang, "Linear and nonlinear intersubband electroabsorption in a modulation-doped quantum well," J. Appl. Phys., vol. 69, pp. 3249-3260, 1991.
[15] S. L. Chuang, Physics of Optoelectronic Devices, Appendix C Table C.2 (Wiley, New York, 1995).
[16] S. L. Chuang, Physics of Optoelectronic Devices, Appendix C Table C.3 (Wiley, New York, 1995).
[17] C. G. V. de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B 39, 1871–1883 (1989).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊