跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/03/02 21:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宏庭
研究生(外文):Lin, Hung-Ting
論文名稱:銀蝕刻技術製作改良式柵欄結構太陽能電池並以氫化非晶矽薄膜進行表面鈍化之研究
論文名稱(外文):Surface Passivation of Silver-Assisted Etched MGSC by Using Hydrogenated Amorphous Silicon Film
指導教授:黃惠良黃惠良引用關係
指導教授(外文):Hwang, Huey-Liang
口試委員:林堅楊邱福千
口試日期:2011-7-25
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:58
中文關鍵詞:矽晶太陽能電池表面鈍化
外文關鍵詞:Silicon solar cellSurface passivation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,利用阻值1-10 Ω-cm的P型矽基板經由銀蝕刻技術製作改良式柵欄結構太陽能電池。接著我們提出俱備未來潛力的太陽能電池表面鈍化方式,分別是利用電漿輔助化學氣相沈積系統沉積氫化非晶矽薄膜與氮化矽薄膜的堆疊層。然而其詳細的鈍化機制將在本論文中做深入探討。
為了防止氫化非晶矽薄膜中的氫逸散,我們在其上面加了一層二氧化矽層做為阻擋層防止氫化非晶矽薄膜中的氫含量減少。因此本論文中將分別以雙層鈍化層(氫化非晶矽層/氮化矽層)以及三層鈍化層(氫化非晶矽層/二氧化矽層/氮化矽層)做研究比較與分析。
在單晶矽太陽能電池的效率量測方面,藉由雙層鈍化層(氫化非晶矽層/氮化矽層)與三層鈍化層(氫化非晶矽層/二氧化矽層/氮化矽層)所量測得的效率分別為10.7%以及9.8% 。藉由相同鈍化機制應用在多晶矽太陽能電池上,效率上分別可量測得7.0%以及6.4% 。

Chapter 1 Introduction
1.1 Introduction
1.2 Research motive and goal Reference

Chapter 2 The related theoretical basis of solar cell
2.1 Basic principles of solar cell
2.2 Solar spectrum
2.3 Equivalent circuit of a solar cell
2.4 Passivation technology
2.5 Antireflection coating layer
Reference

Chapter 3 Introduction to manufacturing process and experimental equipments
3.1 The manufacturing process of solar cell
3.2 Introduction to metal-assisted chemical etching
3.3 Major equipments for experiment
3.3.1 High temperature diffusion/forming gases annealing furnace
3.3.2 Plasma enhanced chemical vapor deposition
3.3.3 Metallization
3.4 Measurement equipments
3.4.1 Scanning electron microscope
3.4.2 Solar simulator
3.4.3 Fourier transform infrared spectroscopy
3.4.4 Lifetime measurements
Reference

Chapter 4 Experimental results and discussion
4.1 Characterization of surface texture by silver assisted chemical etching
4.2 Effect of passivation
4.2.1 FTIR measurement
4.2.2 Capacitance-voltage measurement
4.2.3 Effective lifetimes measurement
4.3 The Characterization of mono-crystalline solar cells
4.3.1 The results of process flow 1 (a-Si:H/SiNx)
4.3.2 The results of process flow 2 (a-Si:H/SiO2/SiNx)
4.4 The Characterization of multi-crystalline solar cells
4.4.1 The results of process flow 1 (a-Si:H/SiNx)
4.4.2 The results of process flow 2 (a-Si:H/SiO2/SiNx)
Reference

Chapter 5 Conclusion and future work
5.1 Conclusion
5.2 Future work
Reference

Chapter 1 Introduction
[1] A.E. Becquerel, Compt. Rend. Acad. Sci. 9 (1839) 561.
[2] D.M. Chapin, C.S. Fuller and G.L. Pearson, J. Appl. Phys. 25 (1954) 676.
[3] A. J. Waldau, European Commission Joint Research Centre (2002).
[4] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, and Y. Kuwano, Jap. J. Appl. Phys. 31 (1992) 3518.
[5] M. Taguchi, K. Kawamoto, S. Tsuge, H. Baba, T. Sataka, M. Morizane, K. Uchihasi, N. Nakamura, S. Kyiama, and O. Oota, Prog. Photovolt. 8 (2000) 503.
[6] J. I. Pankove. Appl. Phys. Lett. 32 (1978) 12.
[7] N. H. Nickel, N. M. Johnson, W. B. Jackson, Appl. Phys. Lett. 62 (1993) 3285.
[8] Hans Joachim Moller, Semiconductors for Solar Cells, Artech House (1993).
[9] Sanyo corporation, http://us.sanyo.com/Solar/SANYO-HIT-echnology

Chapter 2 The related theoretical basis of solar cell
[1] S. S. Chen, Master thesis (2005).
[2] Planck, M. , Annalen der Physik 4 (1901) 553.
[3] 莊家琛,太陽能工程-太陽能電池篇,全華(2005).
[4] M. P. Thekackra, NASA Technical Report (1970).
[5] D. A. , Semiconductor Physics and Devices, Neamen (2003).
[6] Hezel R, Jager K. , Journal of Electrochemical Society 136 (1989) 518.
[7] Leguijt C, Lolgen P, Eikelboom JA, Weeber AW, Solar Energy Materials and Solar Cells 40 (1989) 297.
[8] Lauinger T, Schmidt J, Aberle AG, Hezel R. , Applied physics letters 68 (1996) 1232.
[9] J. Y. Lin, H. L. Hwang and C. Y. Sun, National EDMS (1995) 167.

Chapter 3 Introduction to manufacturing process and experimental equipments
[1] X. Li, P. W. Bohn, Appl. Phys. Lett. 77 (2002) 2572.
[2] Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, S. Senz, U. Gosele, Nano Lett. 8 (2008) 3046.
[3] T. Markvart, Solar electricity, JOHN WILEY & SONS (1994).
[4] H. O. Pierson, Chemical Vapor Deposition, Noyes (1992).
[5] J. D. Plummer, M. D. Deal, P. B. Griffin, Silicon VLSI Technology, Prentice Hall, chapter 9 (2000).
[6] J. D. Plummer, M. D. Deal, P. B. Griffin, Silicon VLSI Technology, Prentice Hall, chapter 4 (2000).
[7] Newport corporation , http://www.newport.com/
[8] Freiberg corporation, http://www.freiberginstruments.com/

Chapter 4 Experimental results and discussion
[1] J. P. Sullivan, R. T. Tung, M. R. Pinto, W. R. Graham, J. Appl. Phys.70 (1991) 7403.
[2] J. Sritharathikhun, C. Banerjee, M. Otsubo, T. Sugiura, H. Hamamoto, T. Sato, A. Limmanee, A. Yamada, M. Konagai, Jpn. J. Appl. Phys. 46 (2007) 3296.
[3] B. Kim, D. W. Kim, S. S. Han, Vacuum 72 (2004) 385.
[4] H. Mäckel and R. Lüdemann , J. Appl. Phys. 92 (2002) 5.
[5] S. Dauwe, J. Schmidt, A. Metz, R. Hezel, Proc. 29th IEEE Photovoltaic Specialists Conf (2002) 162.

Chapter 5 Conclusion and future work
[1] J. Sritharathikhun, C. Banerjee, M. Otsubo, T. Sugiura, H. Yamamoto, T. Sato, A. Limmanee, A. Yamada, M. Konagai, Jpn. J. Appl. Phys. 46 (2007) 3296.
[2] C. Jeong, S. Boo, M. Jeon, K. Kamisako, J. Nanosci. Nanotechnol. 7 (2007) 4169.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊