跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 20:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳仕承
研究生(外文):Chen, Shih-Cheng
論文名稱:Fabrication and Electrical Characterization of Nanocrystal and Resistance Switching Nonvolatile Memories
論文名稱(外文):奈米點及電阻式非揮發性記憶體元件之製作與特性研究
指導教授:葉鳳生張鼎張
指導教授(外文):Yeh, Fon-ShanChang, Ting-Chang
口試委員:張鼎張吳永俊戴亞翔許正宗
口試日期:2011-7-13
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:173
中文關鍵詞:奈米點非揮發性記憶體氫電漿氧電漿氧化鉻電阻式記憶體載子傳輸方式濕式臨場氧化
外文關鍵詞:nanocrystalnonvolatilehydrogen plasmaoxygen plasmaCr2O3resistance switchingcarrier transportIn situ steam generation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:312
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:1
In conventional memory devices, poly-silicon is employed as a floating-gate to store charge. However, the conventional floating-gate non-volatile memory device has met the challenge of reliability owing to the requirement of down-scaling device. The scaled tunneling oxide is difficult to prevent the stored charge in the floating-gate from tunneling back into the Si-substrate. Therefore, in order to improve the retention time of conventional floating-gate memories, some novel memories are proposed to replace the conventional floating-gate memories, such as SONOS or nanocrystal nonvolatile memory which are similar to conventional floating-gate memories, and resistance random access memory. There are two kind of nonvolatile memories that are investigated in this thesis. We will introduce and study the nanocrystal memory in the first half of the thesis and the resistance random access memory in the latter half.
Nanocrystal nonvolatile memory devices have been investigated as a method to overcome these drawbacks in recent years. Because discrete trap storage nodes act as the charge center of nanocrystal nonvolatile memory devices, they can effectively avoid data loss in terms of reliability when such devices scale down. For nanoscale devices, the density of nanocrystal is an issue because the memory window is dependent on the nanocrystal density. High density is helpful to scale down device structure. However, if the density of nanocrystals is very high, the quality of the oxide which surrounds the nanocrystals will be critical. Because the electrons stored in nanocrystals will escape easily by trap tunneling if the oxide quality is not sufficient. When nanocrystals are very close to each other, there is a tradeoff between high nanocrystal density and good reliability for nano-NVM application. In order to achieve both high density and good reliability, using high-pressure hydrogen treatment with high temperature annealing (700-900 oC) has been proven to be a valid method to improve the oxide surrounding NCs. Unfortunately, metal nanocrystals and metal control gates cannot endure this temperature treatment. Hence, some of post-plasma treatment such as hydrogen and oxygen plasma treatment are proposed for tungsten nanocrystal nonvolatile memory as an alternative method to passivate the defects in the surrounding oxide and improve its quality. The advantages of this method are a simple fabrication process and a low thermal budget.
In the thesis, the influence of a hydrogen plasma treatment on electrical properties of tungsten nanocrystal nonvolatile memory was studied. The X-ray photon emission spectra shows that, after the hydrogen plasma treatment, a change in binding energy occurs such that Six+ and Siy+ peaks appear at a position that is shifted about 2.3 and 3.3 eV from Si0+ in Si 2p spectra. This indicates Si dangling bonds are passivated to form a Si-H bond structure in the SiO2. Electrical measurement analyses show improved data retention because the hydrogen plasma treatment enhances the quality of the oxide surrounding the nanocrystals.
In addition, an oxygen plasma treatment was also used to improve the memory effect of nonvolatile tungsten nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for tungsten nanocrystals embedded oxide with and without the oxygen plasma treatment. The transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of tungsten nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhances the quality of silicon oxide surrounding the tungsten nanocrystals. Therefore, the data retention and endurance characteristics are also improved by the passivation.
According to the values of other literatures, a in-situ-steam-generation (ISSG) oxidation process can be used to improve the quality of thin oxide. Therefore, the formation of tungsten nanocrystal nonvolatile memory was provided by using ISSG oxidation process. The charge trapping layer of stacked a-Si and WSi2 was deposited by low pressure chemical vapor deposition (LPCVD) and was oxidized by ISSG system to form uniform tungsten nanocrystals embedded in SiO2. Transmission electron microscopy analyses revealed the microstructure in the thin film and X-ray photon-emission spectra indicated the variation of chemical composition under different oxidizing conditions. Electrical measurement analyses showed the different charge storage effects because the different oxidizing conditions influence composition of trapping layer and surrounding oxide quality. The results show the reliability of the structure with 2% hydrogen and 98% oxygen at 950℃ oxidizing condition has the best performance among the samples.
Another kind of nonvolatile memory, resistance random access memory, has attracted a numerous of attention, and researched to replace conventional memory devices. This study also investigates the resistance switching characteristics of Cr2O3-based resistance random access memory (RRAM) with Pt/Cr2O3/TiN and Pt/Cr2O3/Pt structures. Only devices with Pt/Cr2O3/TiN structure exhibit bipolar switching behavior after the forming process because TiN was able to work as an effective oxygen reservoir but Pt was not. Oxygen migration between Cr2O3 and TiN was observed clearly before and after resistance switching from Auger electron spectroscopy (AES) analysis. Both low resistance state, ON state, and high resistance state, OFF state, of Pt/Cr2O3/TiN structures are stable and reproducible during a successive resistive switching. The resistance ratio of ON and OFF state is over 102, on top of that, the retention properties of both states are very stable after 104 seconds with a voltage of -0.2V.
The carrier transport phenomenon and multi-level switching mechanism of Cr2O3-based resistance random-access memory (RRAM) with Pt/Cr2O3/TiN structure were investigated. Before the forming process, the interfacial Schottky barrier dominates the carrier transport. The barrier heights of Pt/Cr2O3 and Cr2O3/TiN are 0.7 and 0.96 eV. After the forming process, RRAM at a low resistance state follows the Ohmic conduction. While RRAM is switched to high resistance state during the reset process, the Frenkel-Poole emission becomes a dominant conduction mechanism. The multi-level resistance states were achieved by applying corresponding reset voltages to the device for controlling the trap levels of Cr2O3 layer.
The multi-level resistance switching characteristics of Cr2O3-based resistance random access memory with Pt/Cr2O3/TiN structures was researched. By controlling compliance current during set process and sweeping voltage range during reset process, multi low-resistance and high-resistance states can be achieved, respectively. Dependence of multi low and high resistance states on the temperature was further investigated. Energy band diagram models in different temperatures and in the low and high resistance states were proposed to explain corresponding carrier transport mechanisms. According to the results, multi-level operation by changing compliance current is suitable because the multi low resistance states are less sensitive to temperature.

Content
Chinese Abstract--------------------------------------------------------------------------------I
English Abstract-------------------------------------------------------------------------------IV
Contents------------------------------------------------------------------------------------------X
Table Captions------------------------------------------------------------------------------XV
Figure Captions------------------------------------------------------------------------------XV
Chapter 1 Introduction------------------------------------------------------------------------1
1.1 Overview of Nonvolatile Memory---------------------------------------------------1
1.2 SONOS Nonvolatile Memory Devices----------------------------------------------4
1.3 Nanocrystal Nonvolatile Memory Devices-----------------------------------------7
1.4 Resistance switching memory-------------------------------------------------------11
1.5 Organization of This Thesis---------------------------------------------------------13

Chapter 2 Basics principle of nonvolatile memory-------------------------------------25
2.1 Introduction----------------------------------------------------------------------------25
2.2 Basic Program/Erase Mechanisms-------------------------------------------------27
2.2.1 Tunneling Injection-----------------------------------------------------------27
2.2.2 Hot-Electron Injection & Hot hole injection------------------------------30
2.2.3 Band to Band Assisted Hole Injection--------------------------------------31
2.3 Basic Reliability of Nonvolatile Memory-----------------------------------------31
2.3.1 Retention-----------------------------------------------------------------------------31
2.3.2 Endurance----------------------------------------------------------------------32
2.4 Basic Physical Characteristic of Nanocrystal NVM-----------------------------32
2.4.1 Quantum Confinement Effect-----------------------------------------------32
2.4.2 Coulomb Blockade Effect----------------------------------------------------32

Chapter 3 Influence of hydrogen or oxygen plasma treatment on charge storage characteristics in tungsten nanocrystal nonvolatile memory------------43
3.1 Nonvolatile memory effect of Tungsten nanocrystals under hydrogen plasma treatments-----------------------------------------------------------------------------------43
3.1.1 Introduction--------------------------------------------------------------------43
3.1.2 Experiment---------------------------------------------------------------------44
3.1.3 Discussion and results--------------------------------------------------------46
3.1.4 Conclusion---------------------------------------------------------------------51

3.2 Nonvolatile memory effect of Tungsten nanocrystals under oxygen plasma treatments-----------------------------------------------------------------------------------52
3.2.1 Introduction--------------------------------------------------------------------52
3.2.2 Experiment---------------------------------------------------------------------53
3.2.3 Discussion and results--------------------------------------------------------54
3.2.4 Conclusion---------------------------------------------------------------------58

Chapter 4 Formation and Nonvolatile memory characteristics of W nanocrystals by In-Situ Steam Generation Oxidation-------------------------------------75
4.1 Introduction----------------------------------------------------------------------75
4.2 Experiment-----------------------------------------------------------------------76
4.3 Discussion and results----------------------------------------------------------77
4.4 Conclusion------------------------------------------------------------------------80

Chapter 5 Basic Principle of Resistive Random Access Memory--------------------89
5.1 Novel revolutionary non-volatile memory----------------------------------------89
5.1.1 MRAM (Magnetoresistive RAM)------------------------------------------89
5.1.2 FeRAM (Ferroelectric RAM)------------------------------------------------90
5.1.3 PCRAM (Phase change RAM)----------------------------------------------90
5.1.4 RRAM (Resistive RAM)-----------------------------------------------------91
5.2 Polarization dependent of RRAM (Resistance RAM)---------------------------92
5.2.1 Unipolar------------------------------------------------------------------------92
5.2.2 Bipolar--------------------------------------------------------------------------92
5.2.3 Nonpolar------------------------------------------------------------------------93
5.3 Mechanism of RRAM (Resistance RAM)-----------------------------------------93
5.3.1 Joule-heating-------------------------------------------------------------------95
5.3.2 Redox processes induced by anion migration-----------------------------95
5.3.3 Redox processes induced by cation migration----------------------------98
5.4 Conducting mechanisms in oxides-------------------------------------------------99
5.4.1 Tunneling---------------------------------------------------------------------100
5.4.2 Schottky emission-----------------------------------------------------------100
5.4.3 Ohmic conduction-----------------------------------------------------------101
5.4.4 Frenkel-Poole emission-----------------------------------------------------101
5.5.5 Space-charge-limited current-----------------------------------------------102

Chapter 6 Chromium Oxide Resistive Random Access Memory------------------116
6.1 Bipolar resistive switching of Chromium Oxide for Resistive Random Access Memory------------------------------------------------------------------------------116
6.1.1 Introduction-------------------------------------------------------------------116
6.1.2 Experiment--------------------------------------------------------------------117
6.1.3 Discussion and results-------------------------------------------------------118
6.1.4 Conclusion--------------------------------------------------------------------122

6.2 Carrier transport and multi-level switching mechanism for Chromium Oxide resistive random-access memory-------------------------------------------------123
6.2.1 Introduction-------------------------------------------------------------------123
6.2.2 Experiment--------------------------------------------------------------------124
6.2.3 Discussion and results-------------------------------------------------------124
6.2.4 Conclusion--------------------------------------------------------------------129

6.3 Temperature dependence of operation method for Chromium Oxide multi-level resistance switch nonvolatile memory-----------------------------130
6.3.1 Introduction-------------------------------------------------------------------130
6.3.2 Experiment--------------------------------------------------------------------130
6.3.3 Discussion and results-------------------------------------------------------131
6.3.4 Conclusion--------------------------------------------------------------------135

Chapter 7 Conclusion-----------------------------------------------------------------------148
Reference--------------------------------------------------------------------------------------152
Publication List------------------------------------------------------------------------------171

[1] S. Lai, “Future Trends of Nonvolatile Memory Technology”, December (2001).
[2] S. Aritome, “Advanced flash memory technology and trends for file storage application” IEEE IEDM Tech. Dig., 763 (2000).
[3] R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, “Introduction to flash memory”. Proc. of IEEE, 91, 489 (2003).
[4] D. Kahng and S. M. Sze, “A floating-gate and its application to memory devices”, Bell Syst. Tech. J. 46, 1288 (1967).
[5] F. Masuoka, M. Momodomi, Y. Iwata, R. Shirota, “New ultra high density EPROM and Flash EEPROM with NAND structure cell”, IEEE IEDM Tech. Dig. 552 (1987).
[6] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells—An overview” Proc. IEEE, 85, 1248–1271 (1997).
[7] Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Visconti, “Introduction to Flash Memory” Proc. IEEE, 91 489 (2003).
[8]“International Technology Roadmap for Semiconductors, 2009 update at http://www.itrs.net/Links/2009ITRS/Home2009.htm
[9] King, Ya-Chin, “Thin Dielectric Technology and Memory Devices”, Ph.D dissertation, Univ. of California, Berkeley, CA (1999)
[10] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, 1, 72 (2002).
[11] M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996).
[12] M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS,” IEEE circuits & devices, 16, 22 (2000).
[13] H. E. Maes, J. Witters, and G. Groeseneken, “Trends in non-volatile mem- ory devices and technologies” Proc. 17 European Solid State Devices Res. Conf. Bologna 1987, 157 (1988).
[14] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., 521 (1995).
[15] S. Park, H. Im, I. Kim, and T. Hiramoto,” Impact of Drain Induced Barrier Lowering on Read Scheme in Silicon Nanocrystal Memory with Two-Bit-per-Cell Operation” Jpn. J. Appl. Phys., 45, 638 (2006)
[16] J. H. Jung, J.-H. Kim, T. W. Kim, M. S. Song, Y.-H. Kim, and S. Jin, “Nonvolatile organic bistable devices fabricated utilizing Cu2O nanocrystals embedded in a polyimide layer” Appl. Phys. Lett. 89, 122110 (2006)
[17] D. C. Worledge,” Spin flop switching for magnetic random access memory” Appl. Phys. Lett. 84, 4559 (2004)
[18] L. Chen, Y. Xia, X. Liang, K. Yin, J. Yin, Y. Chen, and Z. Liu,” Nonvolatile memory devices with Cu2S and Cu-Pc bilayered films” Appl. Phys. Lett. 91, 073511 (2007)
[19] Chih-Yang Lin, Chen-Yu Wu, Chung-Yi Wu, Chenming Hu, and Tseung-Yuen Tseng, “Bistable Resistive Switching in Al2O3 Memory Thin Films,” Journal of The Electrochemical Society, 154 G189-G192 (2007)
[20] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park,” Reproducible resistance switching in polycrystalline NiO films” Appl. Phys. Lett. 85, 5655 (2004)
[21] H.-Y. Lee, P.-S. Chen, C.-C. Wang, S. Maikap, P.-J. Tzeng, C.-H. Lin, L.-S. Lee, and M.-J. Tsai,” Low-Power Switching of Nonvolatile Resistive Memory Using Hafnium Oxide” Jpn. J. Appl. Phys., 46, 2175 (2007)
[22] J. Sakai and S. Imai, “Room-temperature resistance switching and temperature hysteresis of Pr0.7Ca0.3MnO3 junctions” J. Appl. Phys. 97, 10H709 (2005)
[23] X. F. Liang, Y. Chen, L. Chen, J. Yin, and Z. G. Liu,” Electric switching and memory devices made from RbAg4I5 films” Appl. Phys. Lett. 90, 022508 (2007)
[24] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Fromeer, and D. Finzi, “NROM: A novel localized trapping, 2-bit nonvolatile memory cell”, IEEE Electron Device Lett., 21, 543–545 (2000).
[25] H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O’Connell, and R. E. Oleksiak, “The variable threshold transistor, a new electrically alterable nondestructive read-only storage device”, presented at the Internat’l Electron Devices Meeting, (1967)
[26] Y. Yang, A. Purwar, and M. H. White,” Reliability considerations in scaled SONOS nonvolatile memory devices” Solid-State Electronics, 43, 2025, (1999).
[27] M. She, T. J. King, C. Hu, W. Zhu, Z. Luo, J. P. Han, and T. P. Ma, “JVD silicon nitride as tunnel dielectric in p-channel flash memory”, IEEE Electron Device Lett., 23, 91 (2002).
[28] H. Reisinger, M. Franosch, B. Hasler, and T. Bohm, “A novel SONOS structure for nonvolatile memories with improved data retention” Symp. on VLSI Tech. Dig., 9A-2, 113 (1997).
[29] M. L. French, C. Y. Chen, H. Sathianathan, and M. H. White, IEEE Transactions on Components, Packaging, and Manufacturing Technology, 17, 390 (1994).
[30] M. H. White and Y. Yang, “A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Trans. Comp., Pkg and Mfg. Tech., 20, 190 (1997)
[31] Liu, Z. Lee, C. Narayanan, V. Pei, G. Kan, “Metal nanocrystal memories. I. Device design and fabrication”, IEEE Trans. 49, 1606-1613 (2002)
[32] K. K. Likharev, “Single-electron devices and their applications”, Proc. IEEE, 87, 606–632 (1999).
[33] R. Ohba, N. Sugiyama, K. Uchida, J. Koga, and A. Toriumi, “Nonvolatile Si quantum memory with self-aligned doubly-stacked dots”, in IEDM Tech. Dig., 313-316 (2000).
[34] Rainer Waser and Masakazu Aono “Nanoionics-based resistive switchingmemories” 2007 Nature Publishing Group.
[35] Ni Zhong, Hisashi Shima , and Hiro Akinaga “Rectifying characteristic of Pt/TiOx/metal/Pt controlled by electronegativity” Appl. Phys. Lett. 96, 042107 (2010)
[36] Ni Zhong, Hisashi Shima, and Hiro Akinaga “Switchable Pt/TiO2-x/Pt Schottky Diodes” Jpn. J. Appl. Phys. 48 05DF03 (2009)
[37] Sungho Kim and Yang-Kyu Choi “A Comprehensive Study of the Resistive Switching Mechanism in Al/TiOx/TiO2/Al-Structured RRAM” IEEE TRANSACTIONS ON ELECTRON DEVICES 56, 3049 (2009)
[38] J. JOSHUA YANG, MATTHEW D. PICKETT, XUEMA LI, DOUGLAS A. A. OHLBERG, DUNCAN R. STEWART* AND R. STANLEY WILLIAMS “Memristive switching mechanism for metal/oxide/metal nanodevices” Nature Nanotechnology 3, 429 (2008)
[39] Sheng-Yu Wang, Dai-Ying Lee, Tseung-Yuen Tseng, and Chih-Yang Lin “Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films” Appl. Phys. Lett. 95, 112904 (2009)
[40] Bing Sun, Lifeng Liu, Nuo Xu, Bin Gao, Yi Wang, Dedong Han, Xiaoyan Liu,Ruqi Han, and Jinfeng Kang “The Effect of Current Compliance on the Resistive Switching Behaviors in TiN/ZrO2/Pt Memory Device” The Japan Society of Applied Physics 48, 04C061 (2009)
[41] U. Russo, D. Jelmini, C. Cagli, A. L. Lacaita, S. Spigat, C. Wiemert, M. Peregot and M. Fanciullit “Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM”. IEDM 775-778 (2007)
[42] Ming-Daou Lee, Chia-Hua Ho, Chi-Kuen Lo, Tai-Yen Peng, and Yeong-Der Yao ”Effect of Oxygen Concentration on Characteristics of NiOx-Based Resistance Random Access Memory” IEEE TRANSACTIONS ON MAGNETICS, 43, 939-942 (2007)
[43] S. Seo,a_ M. J. Lee, D. C. Kim, S. E. Ahn, B.-H Park, Y. S. Kim, and I. K. Yoo, Korea I. S. Byun, I. R. Hwang, S. H. Kim, J.-S. Kim, J. S. Choi, J. H. Lee, S. H. Jeon, S. H. Hong, and B. H. Park ”Electrode dependence of resistance switching in polycrystalline NiO films” Appl. Phys. Lett. 87, 263507 (2005)
[44] Carlo Cagli, Federico Nardi, and Daniele Ielmini, “Modeling of Set/Reset Operations in NiO-Based Resistive-Switching Memory Devices” IEEE TRANSACTIONS ON ELECTRON DEVICES, 56, 1712 - 1720 (2009)
[45] Y. Liu • T.P. Chen • H.W. Lau • L. Ding • M. Yang • J.I. Wong • S. Zhang • Y.B. Li “Conduction switching in aluminum nitride thin films containing Al nanocrystals” Appl Phys A 93, 483-487 (2008)
[46] Chih-Yang Lin a, Dai-Ying Lee a, Sheng-Yi Wang a, Chun-Chieh Lin a, Tseung-Yuen Tseng ”Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices” Surface & Coatings Technology 203, 628-631 (2008)
[47] H. B. Lv, M. Yin, P. Zhou, T. A. Tang, B.A.Chen, Y.Y. Lin “Improvement of Endurance and Switching Stability of Forming-free CuxO RRAM” Non-Volatile Semiconductor Memory Workshop, 2008 and 2008 International Conference on Memory Technology and Design. NVSMW/ICMTD 2008 Joint 52-53 (2008)
[48] An Chen, Sameer Haddad, Yi-Ching (Jean) Wu, Tzu-Ning Fang, Zhida Lan, Steven Avanzino, Suzette Pangrle, Matthew Buynoski, Manuj Rathor, Wei (Daisy) Cai, Nick Tripsas, Colin Bill, Michael VanBuskirk, and Masao Taguchi “Non-Volatile Resistive Switching for Advanced Memory” Applications 2005 IEEE IEDM 746 - 749 (2005)
[49] S. Muraoka, K. Osano, Y. Kanzawa, S. Mitani, S. Fujii, K.Katayama, Y. Katoh, Z. Wei, T. Mikawa, K. Arita, Y. Kawashima, R. Azuma, K. Kawai, K. Shimakawa, A. Odagawa, and T. Takagi “Fast switching and long retention Fe-O ReRAM and its switching mechanism” 2007 IEEE IEDM 779-782 (2007)
[50] Li-Wei Feng, Chun-Yen Chang, Yao-Feng Chang, Wei-Ren Chen, Shin-Yuan Wang, Pei-Wei Chiang, and Ting-Chang Chang ”A study of resistive switching effects on a thin FeOx transition layer produced at the oxide/iron interface of TiN/SiO2 /Fe-contented electrode structures” Appl. Phys. Lett. 96, 052111 (2010)
[51] Chia Hua Ho, E. K. Lai, M. D. Lee, C. L. Pan, Y. D. Yao, K. Y. Hsieh, Rich Liu, and C. Y. Lu “A Highly Reliable Self-Aligned Graded Oxide WOx Resistance Memory: Conduction Mechanisms and Reliability 2007 Symposium on VLSI Technology Digest of Technical Papers 228-229 (2007)
[52] W. C. Chien, Y. C. Chen, E. K. Lai, Y. D. Yao, P. Lin, S. F. Horng, J. Gong, T. H. Chou, H. M. Lin, M. N. Chang, Y. H. Shih, K. Y. Hsieh, R. Liu, Senior Member, IEEE, and Chih-Yuan Lu, Fellow, IEEE ”Unipolar Switching Behaviors of RTO WOx RRAM” Electron Device Letters, IEEE , 31, 126-128 (2010)
[53] Xu, N., et al., “Bipolar switching behavior in TiN/ZnO/Pt resistivenonvolatile memory with fast switching and long retention. “ Semiconductor Science and Technology 23, 075019 (2008)
[54] N. Xu, B. Gao, L.F. Liu, Bing Sun, X.Y. Liu, R.Q. Han, J.F. Kang, and B. Yu “A Unified Physical Model of Switching Behavior in Oxide-Based RRAM” 2008 Symposium on VLSI Technology Digest of Technical Papers. 100 (2008)
[55] Heng Yuan Lee, Pang Shiu Chen, Tai Yuan Wu, Ching Chiun Wang, Pei Jer Tzeng, Cha Hsin Lin, Frederick Chen, Ming-Jinn Tsai, and Chenhsin Lien “Electrical evidence of unstable anodic interface in Ru/HfOx /TiN unipolar resistive memory” Appl. Phys. Lett. 92, 142911 (2008)
[56] Shyh-Shyuan Sheu, Pei-Chia Chiang, Wen-Pin Lin, Heng-Yuan Lee, Pang-Shiu Chen, Yu-Sheng Chen, Tai-Yuan Wu , Frederick T. Chen, Keng-Li Su, Ming-Jer Kao, Kuo-Hsing Cheng, Ming-Jinn “A 5ns Fast Write Multi-Level Non-Volatile 1 K bits RRAM Memory with Advance Write Scheme” 2009 Symposium on VLSI Circuits Digest of Technical Papers 82- 83 (2009)
[57] Heng-Yuan Lee, Pang-Shiu Chen, Tai-Yuan Wu, Ching-Chiun Wang, Pei-Jer Tzeng, Cha-Hsin Lin, Frederick Chen, Chen-Hsin Lien, and Ming-Jinn Tsai “HfO2 Bipolar Resistive Memory Device with Robust Endurance using AlCu as Electrode” Electron Device Letters, IEEE 30, 703-705 (2009)
[58] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai “Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM” 2008 IEDM 1-4 (2008)
[59] M. Woods, Nonvolatile Semiconductor Memories: Technologies, Design, and Application, C. Hu, Ed. New York: IEEE Press, CH. 3, 59 (1991)
[60] S. M. Sze, “Current Transport and Maximum Dielectric Strength of Silicon Nitride Films” J. Appl. Phys. 38, 2951 (1967).
[61] Min She, “Semiconductor Flash Memory Scaling”.
[62] J. Bu, M. H. White,” Design considerations in scaled SONOS nonvolatile memory devices” Solid-State Electronics., 45, 113 (2001)
[63] M. L. French, M. H. White., Solid-State Electron., 37, 1913 (1995)
[64] Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E. Hasegawa, A. Ishitani, and T. Okazawa, IEDM Tech. Dig., p.19 (1993)
[65] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan,” Metal nanocrystal memories. I. Device design and fabrication” IEEE Transactions of Electron Devices., 49, 1606 (2002)
[66] M.Lenzlinger ”Fowler-Nordheim Tunneling in thermall grown SiO2” , J. App. Phys., 40, 278 (1969)
[67] J. Moll, Physics of Semiconductors. New York: McGraw-Hill, (1964)
[68] Christer Sevensson and Ingemar Lundstrom,” Trap‐assisted charge injection in MNOS structures” J. Appl. Phys., 44, 4657 (1973)
[69] P. E. Cottrell, R. R. Trountman, “Hot electron emission in n-channel IGFETs,” Solid-State Circuits, IEEE Journal of, 14, 442 (1979)
[70] B. Eitanet, ”Hot electron injection into oxide in n channel mos devices, IEEE Trans. Electron devices 28, 328 (1981).
[71] M.She, Tsu-Jae King, Chenming Hu, Wenjuan Zhu, Zhijiong Luo, Jin-Ping Han, and Tso-Ping Ma, ” JVD Silicon Nitride as Tunnel Dielectric in p-Channel Flash Memory” IEEE Electron Device Lett., 23, 91 (2002)
[72] San, K.T.; Kaya, C.; Ma, T.P.; “Effects of erase source bias on flash EPROM device reliability” Electron Devices, IEEE Transactions 42, 150-159 (1995)
[73] Steve S. Chung, Cherng-Ming Yih, Shui-Ming Cheng, and Mong-Song Liang, “A New Technique for Hot Carrier Reliability Evaluations of Flash Memory Cell After Long-Term Program/Erase Cycles”, IEEE TRANSACTIONS ON ELECTRON DEVICES, 46, 1883 (1999)
[74] Suk-Kang Sung, I1-Han Park, Chang Ju Lee, Yong Kyu Lee, Jong Duk Lee, Byung-Gook Park, Soo Doo Chae, and Chung Woo Kim, ”Fabrication and Program/Erase Characteristics of 30-nm SONOS Nonvolatile Memory Devices, ” IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2, 258 (2003)
[75] J. De Blauwe, M. Ostraat, M. Green, G. Weber, T. Sorsch, A. Kerber, F. Klemens, R. Cirelli, E. Ferry, J. L. Grazul, F. Baumann, Y. Kim, W. Mansfield, J. Bude, J. T. C. Lee, S. J. Hillenius, R. C. Flagan, and H. A. Atwater, “A novel, aerosol-nanocrystal floating-gate device for nonvolatile memory applications”, in IEEE Int. Electron Devices Meeting (IEDM) Tech. 683-686 (2000)
[76] H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and long retention-time nanocrystal memory”, IEEE Trans. Electron Devices, 43, 1553-1558 (1996).
[77] Y.-C. King, T.-J. King, and C. Hu, “Charge-trap memory device fabricated by oxidation of Si1-x Ge ,” IEEE Trans. Electron Devices, 48, 696-700 (2001).
[78] Likharev KK. “Riding the crest of a new wave in memory NOVORAM”, IEEE Circuits & Devices Magazine, 16, 16-21 (2000).
[79] Lee, J.J.; Wang, X.; Bai, W.; Lu, N.; Lni, J.; Kwong, D.L, “Theoretical and experimental investigation of Si nanocrystal memory device with hfO 2 high-k tunneling dielectric”, Symposium on VLSI Technology, Digest of Technical Papers, 33-34 (2003)
[80] Chao-Cheng Lin, Ting-Chang Chang, Chun-Hao Tu, Wei-Ren Chen, Chih-Wei Hu, Simon M. Sze, Tseung-Yuen Tseng, Sheng-Chi Chen, and Jian-Yang Lin,” Charge storage characteristics of Mo nanocrystal dependence on Mo oxide reduction” Appl. Phys. Lett. 93, 222101 (2008).
[81] Wei-Ren Chen, Ting-Chang Chang, Jui-Lung Yeh, Chun-Yen Chang, and Shih-Ching Chen,” Nonvolatile memory characteristics influenced by the different crystallization of Ni–Si and Ni–N nanocrystals” Appl. Phys. Lett. 92, 062112 (2008).
[82] Wei-Ren Chen, Ting-Chang Chang, Jui-Lung Yeh, Simon M. Sze, Chun-Yen Chang, and Uei-Shin Chen,” Formation and nonvolatile memory effect of nickel-oxygen-silicon nanoparticles” Appl. Phys. Lett. 91, 222105 (2007).
[83] H. G. Yang, Y. Shi, S. L. Gu, B. Shen, P. Han, R. Zhang, and Y. D. Zhang,” Numerical investigation of characteristics of p-channel Ge/Si hetero-nanocrystal memory” Microelectronics Journal 34, 71 (2003).
[84] C. H. Chen, T. C. Chang, I. H. Liao, P. B. Xi, Joe Hsieh, Jason Chen, Tensor Huang, S. M. Sze, U. S. Chen, and J. R. Chen,” Tungsten oxide/tungsten nanocrystals for nonvolatile memory devices” Appl. Phys. Lett. 92, 013114 (2008).
[85] S. K. Samanta, Zerlinda Y. L. Tan, Won Jong Yoo, Ganesh Samudra, Sungjoo Lee, L. K. Bera, and N. Balasubramanian,” Self-assembled tungsten nanocrystals in high-k dielectric for nonvolatile memory application” JVST B 23, 2278-2283 (2005).
[86] Jer-Chyi Wang, Pai-Chi Chou, Chao-Sung Lai, Wen-Hui Lee, Chi-Fong Ai,” Characteristics optimization of N2O annealing on tungsten nanocrystal with W/Si dual-sputtered method for nonvolatile memory application” Microelectronics Reliability 50, 639 (2010).
[87] Houssa, M. Tuominen, M. Naili, V. Afanas’ev, A. Stesmans, S. Haukka, and M. M. Heyns,” Trap-assisted tunneling in high permittivity gate dielectric stacks” J. Appl. Phys. 87, 8615 (2000).
[88] W. R. Chen, T. C. Chang, P. T. Liu, P. S. Lin, C. H. Tu, and C. Y. Chang, “Formation of stacked Ni silicide nanocrystals for nonvolatile memory application” Appl. Phys. Lett. 90, 112108 (2007).
[89] G. Taraschi, S. Saini, W. W. Fan, and L. C. Kimerling,” Nanostructure and infrared photoluminescence of nanocrystalline Ge formed by reduction of Si0.75Ge0.25O2/Si0.75Ge0.25 using various H2 pressures” J. Appl. Phys. 93, 9988 (2003).
[90] C. H. Tu, T. C. Chang, P. T. Liu, H. C. Liu, S. M. Sze, and C. Y. Chang,” Improved memory window for Ge nanocrystals embedded in SiON layer” Appl. Phys. Lett. 89, 162105 (2006).
[91] T. Suzuki, M. Muto, M. Hara, K. Yamabe, T. Hattori,” Depth Profiling of Si-SiO2 Interface Structures” Jpn. J. Appl. Phys. 25, 544-551 (1986).
[92] A. Ikeda, T. Sadou, H. Nagashima, K. Kouno, N. Yoshikawa, K. Tshukamoto, Y. Kuroki,” Electronic properties of MOS capacitor exposed to inductively coupled hydrogen plasma” Thin Solid Films 345, 172-177 (1999).
[93] Kazuhisa Sugiyama, Takayuki Igarashi, Kazunori Moriki, Yoshikatsu Nagasawa, Takayuki Aoyama, Rinshi Sugino, Takashi Ito and Takeo Hattori,” Silicon-Hydrogen Bonds in Silicon Native Oxides Formed during Wet Chemical Treatments” Jpn. J. Appl. Phys. 29, L2401-L2404 (1990).
[94] T. Hattori, T. Igarashi, M. Ohi and H. Yamagishi,” Chemical Bonds at and Near the SiO2/Si Interface” Jpn. J. Appl. Phys. 28, L1436-L1438 (1989).
[95] Yasushi Sawada, Noriyuki Taguchi and Kunihide Tachibana,” Reduction of Copper Oxide Thin Films with Hydrogen Plasma Generated by a Dielectric-Barrier Glow Discharge” Jpn. J. Appl. Phys. 38, 6506-6511 (1999).
[96] Chung-Jin Kim, Sung-Jin Choi, Seong-Wan Ryu, Sungho Kim, Jae-Joon Chang, SuHak Bae, Byeong-Hyeok Sohn and Yang-Kyu Choi,” A study of the memory effects of metallic core–metal oxide shell nanocrystals by a micelle dipping technique” Nanotechnology 21, 125202 (2010).
[97] T P Nguyen and S Lefrant,” XPS study of SiO thin films and SiO-metal interfaces” Phys. Condens. Matter l , 5197-5204 (1989).
[98] L. G. Piper and W. T. Rawlins,” Oxygen-atom yields from microwave discharges in nitrous oxide/argon mixtures” J. Chem. Phys. 90, 320 (1986).
[99] R. Wolf and K. Wandel,” Mass spectrometry investigation of N2O dissociation and H2 and H2O production during SiO2 deposition in a remote reactor” Surf. Coat. Technol. 74-75, 522 (1995).
[100] O.Kubaschewski and B.E. Hopkins, “Oxidation of Metals and Alloys” (Butterworths, London, 1953).
[101] P.H. Yeh, L.J. Chena, P.T. Liu, D.Y. Wang, T.C. Chang,” Metal nanocrystals as charge storage nodes for nonvolatile memory devices” Electrochimica Acta 52, 2920-2926 (2007)
[102] C. H. Chen, T. C. Chang, I. H. Liao, P. B. Xi, C. T. Tsai, P. Y. Yang, Joe Hsieh and Jason Chen, U. S. Chen and J. R. Chen,” Tungsten nanocrystal memory devices improved by supercritical fluid treatment” Appl. Phys. Lett. 91, 232104 (2007)
[103] P. Chakraborty, S.S. Mahato, T.K.Maiti1, S.Saha and C.K.Maiti,” Tungsten Nanocrystal (W-NC) Flash Memory Cell” Proceedings of the International Conference on Nano and Microelectronics (ICONAME 2008), Pondicherry Engineering College, Puducherry, India, 3-5 239-241 (2008)
[104] Wei-Ren Chen, Ting-Chang Chang, Jui-Lung Yeh, S. M. Sze, and Chun-Yen Chang,” Formation and nonvolatile memory characteristics of multilayer nickel-silicide NCs embedded in nitride layer” J. Appl. Phys., 104, 094303 (2008)
[105] Wei-Ren Chen, Ting-Chang Chang, Jui-Lung Yeh, S. M. Sze, and Chun-Yen Chang,” Reliability characteristics of NiSi nanocrystals embedded in oxide and nitride layers for nonvolatile memory application” Appl. Phys. Lett., 92, 152114 (2008)
[106] S.P. Murarka, “Silicides for VLSI applications”, Academic Press, INC., London, 3-4 (1983)
[107] Y.Matsushita, S.Samata, M.Miyashita and H.Kubota,” Improvement of thin oxide quality by hydrogen annealed wafer” IEDM 321-324 (1994)
[108] Yeong-Shyang Lee, Hsiao-Yi Lin, Tan-Fu Lei, Tiao-Yuan Hung, T.-C. Chang and Chun-Yen Chang,” Comparison of N2 and NH3 Plasma Passivation Effects on Polycrystalline Silicon Thin-Film Transistors” J. J. Appl. Phys. 37, 3900-3903 (1998)
[109] M. KATOH and T. TAKBDA,” “Chemical State Analysis of Tungsten and Tungsten Oxides Using an Electron Probe Microanalyzer” J. J. Appl. Phys. 43, 7297-7295 (2004)
[110] H. QIU and Y. F. LU,” Scanning Tunneling Microscopy and Atomic Force Microscopy Studies of Laser Irradiation of Amorphous WO3 Thin Films” J. J. Appl. Phys. 39, 5889-5893 (2000)
[111] Chao-Cheng Lin, Ting-Chang Chang, Chun-Hao Tu, Shih-Ching Chen, Chih-Wei Hu, Simon M Sze, Tseung-Yuen Tseng, Sheng-Chi Chen and Jian-Yang Lin,”Charge storage characteristics of high density Mo nanocrystal embedded in silicon oxide and silicon nitride” J. Phys. D: Appl. Phys. 43, 075106 (2010)
[112] T. Y. Luo, M. Laughery, G. A. Brown, Member, IEEE, H. N. Al-Shareef, V. H. C. Watt, A.Karamcheti, M. D. Jackson, and H. R. Huff,” Effect of H2 content on reliability of ultrathin in-situ steam generated (ISSG) SiO2” IEEE Electron Device Lett., 21, 430 (2000)
[113]Tung-Ming Pan,” Electrical Characterization of 13 Å In Situ Steam-Generated Oxynitride Gate Dielectrics” Electrochemical and Solid-State Letters, 9 G66-G68 (2006)
[114]Naoto Nagai, K. Terada, Y. Muraji, and H. Hashimoto, T. Maeda, Y. Maeda, E. Tahara, and N. Tokai, A. Hatta,” Infrared absorption study of rapid thermal oxidation and in situ steam generation of thin SiO2 films by gradient etching preparation” J. Appl. Phys. 91, 4747 (2002).
[115] F. Roozeboom, J.C. Gelpey, M.C. Ozturk, J. Nakos. PV 99-10 Advances in rapid thermal processing: proceedings of the symposium
[116] K. Akimoto,” Chemical bonding of W‐Si compounds” Appl. Phys. Lett. 41, 49 (1982)
[117] C. M. Lin, J. S. Chen,” The Influence of Si Content on the Work Function of W1−xSix (x 14 atom %) Gate Electrodes “ Electrochemical and Solid-State Letters, 11 H99-H102 (2008)
[118]Shih-Cheng Chen, Ting-Chang Chang, Wei-Ren Chen, Yuan-Chun Lo, Kai-Ting Wu, S.M. Sze, Jason Chen, I.H. Liao, Fon-Shan Yeh(Huang),” Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments” Thin Solid Films 518, 7993 (2010)
[119] W. R. Chen, T. C. Chang, P. T. Liu, J. L. Yen, C. H. Tu, J. C. Lou, C. F.Yeh, and C. Y. Chang,” Nonvolatile memory characteristics of nickel-silicon-nitride nanocrystal” Appl. Phys. Lett. 91 082103 (2007)
[120] Gerhard Muller, T.H., Micheal Kund, Gill Yong Lee, Nicolas Nagel, and Recai Sezi, “Status and outlook of emerging nonvolatole memory technologies.“ IEEE IEDM 567 - 570 (2004)
[121] Gary A. Prinz “Magnetoelectronics.” Science 282, 1660-1663 (1998)
[122] D. N. Nguyen, Member, IEEE, and L. Z. Scheick, Member, IEEE “TID Testing of Ferroelectric Nonvolatile RAM” Radiation Effects Data Workshop, 2001 IEEE 57-61 (2001)
[123] F-RAM Technology Brief Sept. 2007
[124] R. Zhao*, L.P. Shi, W.J. Wang, H.X. Yang, H.K. Lee, K.G. Lim, E.G. Yeo, E.K. Chua and T.C.Chong “Study of Phase Change Random Access Memory (PCRAM) at the Nano-Scale” Non-Volatile Memory Technology Symposium, 2007. NVMTS '07, 36-39 (2007)
[125] Weihua Guan, Shibing Long, Qi Liu, Ming Liu, and Wei Wang, “Nonpolar Nonvolatile Resistive Switching in Cu Doped ZrO2” IEEE Electron Device Lett. 29, 434-437 (2008)
[126]Chih-Yang Lin, Chung-Yi Wu, Chen-Yu Wu, and Tseung-Yuen Tseng “Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode” J. Appl. Phys. 102, 094101 (2007)
[127]Sawa, A., “Resistive switching in transition metal oxides.”Materials Today 11, 28-36 (2008).
[128]Masayuki Fujimoto, Hiroshi Koyama, Masashi Konagai, Yasunari Hosoi, Kazuya Ishihara, Shigeo Ohnishi, and Nobuyoshi Awaya, “TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching,” Appl. Phys. Lett., 89, 223509 (2006).
[129] L. F. Liu, H. Tang, Y. Wang, D. Y. Tian, X. Y. Liu, X. Zhang, R. Q. Han, and J. F. Kang, “Reversible resistive switching of Gd-doped TiO2 thin films for nonvolatile memory applications,” Inf. Conf. Solid-State and Integrated Circuit Technology, 833-835 (2006).
[130]Kyng Min Kim, Byung Joon Choi, Bon Wook Koo, Seol Choi, Doo Seok Jeong, and Cheol Seong Hwang, “Resistive switching in Pt/Al2O3/TiO2/Ru stacked structures,” Electrochem. Solid-State Lett., 9, G343-G346 (2006).
[131]Kyung Min Kim, Byung Joon Choi, and Cheol Seong Hwang, “Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films,” Appl. Phys. Lett., 90, 242906 (2007).
[132]Markus Janousch, Gerhard Ingmar Meijer, Urs Staub, Bernard Delley, Siegfried F. Karg, and Björn Pererik Andreasson, “Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory,” Adv. Mater.,19, 2232-2235 (2007).
[133]Xu, N., et al., “Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories.“Appl. Phys. Lett. 92, 3 (2008).
[134]Banno, N., Sakamoto, T., Hasegawa, T., Terabe, K. & Aono, M. “Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch.” J. J. Appl. Phys. 45, 3666–3668 (2006).
[135]Xin Guoa and Christina Schindler “Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems “Appl. Phys. Lett. 91, 133513 (2007)
[136]L. Courtade, Ch. Turquat, Ch. Muller, J.G. Lisoni, L. Goux, D.J. Wouters, D. Goguenheim, P. Roussel, L. Ortega, “Oxidation kinetics of Ni metallic films: Formation of NiO-based resistive switching structures,” Thin Solid Films 516 4083– 4092 (2008).
[137] Dongsoo Lee, Dong-jun Seong, Hye jung Choi, Inhwa Jo, R. Dong, W. Xiang, Seokjoon Oh, Myeongbum Pyun, Sun-ok Seo, Seongho Heo, Minseok Jo, Dae-Kyu Hwang, H. K. Park, M. Chang, M. Hasan, and Hyunsang Hwang, “Excellent uniformity and reproducible resistance switching characteristics of doped binary metal oxides for non-volatile resistance memory applications,” Tech. Dig. – Int. Electron Devices Meet, 1-4 (2006).
[138]Yin-Pin Yang, and Tseung-Yuen Tseng, “Electronic defect and trap-related current of (Ba0.4Sr0.6)TiO3 thin films,” J. Appl. Phys., 81, 6762-6766 (1997).
[139]Chun-Chieh Lin, Bing-Chung Tu, Chao-Cheng Lin, Chen-His Lin, and Tseung-Yuen Tseng, “Resistive switching mechanisms of V-doped SrZrO3 memory films,” IEEE Electron Device Lett., 27, 725-727 (2006).
[140] Jae-Wan Park, Kyooho Jung, Min Kyu Yang, and Jeon-Kook Lee, Dal-Young Kim, and Jong-Wan Park, “Resistive switching characteristics and set-voltage dependence of low-resistance state in sputter-deposited SrZrO3:Cr memory films,” J. Appl. Phys., 99, 124102 (2006).
[141] S. M. Sze, “Physics of Semiconductor Devices 2nd Edition,” 1983
[142] A. I. K. Choudhury, M. R. R. Mazumder, K. Z. Ahmed and Q. D. M. Khosru “EXPLANATION FOR REDUCED FOWLER-NORDHEIM TUNNELING CURRENT IN ULTRATHIN SILICON NITRIDE GATE DIELECTRIC” ISBN 984-32-1804-4
[143] M.A Lampert. “Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps.” Physical Review 103, 1648 (1956)
[144] Kyung Min Kim, Byung Joon Choi, Yong Cheol Shin, Seol Choi, and Cheol Seong Hwanga “Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films” Appl. Phys. Lett. 91, 012907 (2007)
[145] J. D. Meindl, Q. Chen, and J. A. Davis,” Limits on Silicon Nanoelectronics for Terascale Integration” Science 293, 2044 (2001)
[146] Douglas A. Skoog, Donald M. West, Fundamentals of analytical chemistry, 8th ed. (2004)
[147] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park,” Conductivity switching characteristics and reset currents in NiO films” Appl. Phys. Lett. 86, 093509 (2005)
[148] C. Y. Lin, C. Y. Wu, C. Y. Wu, T. C. Lee, F. L. Yang, C. Hu, and T. Y. Tseng, ”Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices” IEEE Electron Device Lett. 28 366 (2007)
[149] M. Hassel, I. Hemmerich, H. Kuhlenbeck and H.-J. Freund,” High Resolution XPS Study of a Thin Cr2O3(111) Film Grown on Cr(110)” Surface Science Spectra, 4, 246 (1996)
[150] Ruihua Cheng, B. Xu, C. N. Borca, A. Sokolov, C. -S. Yang, L. Yuan, S. -H. Liou, B. Doudin, and P. A. Dowben,” Characterization of the native Cr2O3 oxide surface of CrO2” Appl. Phys. Lett. 79, 3122 (2001)
[151] Krzysztof Szot, Wolfgang Speier, Gustav Bihlmayer and Rainer Waser,” Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3” Nature Materials, 5, 312 - 320 (2006)
[152] Deok-Hwang Kwon, Kyung Min Kim, Jae Hyuck Jang, Jong Myeong Jeon, Min Hwan Lee, Gun Hwan Kim, Xiang-Shu Li, Gyeong-Su Park, Bora Lee, Seungwu Han, Miyoung Kim and Cheol Seong Hwang,” Atomic structure of conducting nanofilaments in TiO2 resistive switching memory” Nature Nanotechnology 5, 148 - 153 (2010)
[153] John Paul Strachan, Matthew D. Pickett, J. Joshua Yang, Shaul Aloni, A. L. David Kilcoyne, Gilberto Medeiros-Ribeiro, and R. Stanley Williams,” Direct Identification of the Conducting Channels in a Functioning Memristive Device” Adv. Mater. 22, 3573 (2010)
[154] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke,” Resistive switching mechanism of TiO thin films grown by atomic-layer deposition” J. Appl. Phys. 98, 033715 (2005)
[155] I. H. Inoue, S. Yasuda, H. Akinaga, and H. Takagi,” Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution” Phys. Rev. B 77, 035105 (2008)
[156] A. Odagawa, H. Sato, I. H. Inoue, H. Akoh, M. Kawasaki, and Y. Tokura,” Colossal electroresistance of a Pr0.7Ca0.3MnO3 thin film at room temperature” Phys. Rev. B 70, 224403 (2004)
[157] D. S. Shang, Q. Wang, L. D. Chen, R. Dong, X. M. Li, and W. Q. Zhang,” Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag/La0. 7Ca0. 3MnO3/Pt heterostructures” Phys. Rev. B 73, 245427 (2006)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊