|
[1] S. Ang and A. Oliva, Power-Switching Converters. CRC Press, 2005. [2] J. Lee, G. Hatcher, L. Vandenberghe, and C. Yang, “Evaluation of fully- integrated switching regulators for CMOS process technologies,” IEEE Trans- actions on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 9, pp. 1017–1027, Sep. 2007. [3] S. Musunuri, P. Chapman, J. Zou, and C. Liu, “Inductor design for monolithic DC-DC converters,” in Proc. IEEE 34th Annual Power Electronics Specialist Conference, Jun. 2003, pp. 227–232. [4] “ASITIC – Analysis and simulation of spiral inductors and transformers for ICs.” [Online]. Available: http://rfic.eecs.berkeley.edu/∼niknejad/asitic.html [5] S. Abedinpour, B. Bakkaloglu, and S. Kiaei, “A multistage interleaved syn- chronous buck converter with integrated output filter in 0.18 µm SiGe pro- cess,” IEEE Transactions on Power Electronics, vol. 22, no. 6, pp. 2164–2175, Nov. 2007. [6] M. Wens and M. Steyaert, “A fully-integrated CMOS 800mW 4-phase semi- constant on/off-time step-down converter,” IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 326–333, Feb. 2011. [7] P. Xu, J. Wei, K. Yao, Y. Meng, and F. Lee, “Investigation of candidate topologies for 12 V VRM,” in Proc. IEEE Applied Power Electronics Confer- ence and Exposition, vol. 2, Mar. 2002, pp. 686–692. [8] J. Wibben and R. Harjani, “A high-effciency DC-DC converter using 2 nH integrated inductors,” IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp. 844–854, Apr. 2008. [9] ——, “A high efficiency dc-dc converter using 2nh on-chip inductors,” in Proc. IEEE Symposium on VLSI Circuits. Jun., 2007, pp. 22–23. [10] T. Sato, T. Nabeshima, K. Nishijima, T. Nakano, and M. Sekine, “Zero ripple DC-DC converter,” in Proc. IEEE European Conference on Power Electronics and Applications, Sep. 2005, p. 8. [11] ——, “DC-DC Converters with Ripple Cancel Circuit,” in Proc. IEEE 27th Int’l Telecommunications Conference, Sep. 2005, pp. 527–532. [12] C. Lee and P. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE Journal of Solid-State Cir- cuits, vol. 39, no. 1, pp. 3–14, Jan. 2004. [13] A. Patel and M. Ferdowsi, “Advanced Current Sensing Techniques for Power Electronic Converters,” in Proc. IEEE Vehicle Power and Propulsion Con- ference, Sep. 2007, pp. 524–530. [14] Y. Lam, W. Ki, C. Tsui, and D. Ma, “Integrated 0.9 v charge-control switch- ing converter with self-biased current sensor,” in Proc. IEEE Midwest Sym- posium on Circuits and Systems, vol. 2, Jul. 2004, pp. 305–308. [15] D. Goder and W. Pelletier, “V 2 architecture provides ultra-fast transient response in switch mode power supplies,” in Proc. HFPC, vol. 96, 1996, pp. 19–23. [16] M. Wang, “Power supply design with fast transient response using V 2 control scheme,” in Proc. Record International IC Conference, 1999, pp. 189–193. [17] T. Nabeshima, T. Sato, S. Yoshida, S. Chiba, and K. Onda, “Analysis and design considerations of a buck converter with a hysteretic PWM controller,” in Proc. IEEE Annual Power Electronics Specialists Conference, vol. 2, Jun. 2004, pp. 1711–1716. [18] M. Castilla, L. Garc´ıa de Vicu˜na, J. Guerrero, J. Matas, and J. Miret, “De- sign of voltage-mode hysteretic controllers for synchronous buck converters supplying microprocessor loads,” in Proc. IEEE Electric Power Applications, vol. 152, no. 5, Sep. 2005, pp. 1171–1178. [19] F. Su and W. Ki, “Digitally assisted quasi-V 2 hysteretic buck converter with fixed frequency and without using large-ESR capacitor,” in Proc. IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), Feb. 2009, pp. 446–447. [20] M. Castilla, L. Garcia de Vicuna, J. Guerrero, J. Miret, and N. Berbel, “Sim- ple low-cost hysteretic controller for single-phase synchronous buck convert- ers,” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1232–1241, Jul. 2007. [21] P. Allen and D. Holberg, CMOS Analog Circuit Design (2nd Ed.). Oxford University Press, 2002. [22] B. Serneels, M. Steyaert, and W. Dehaene, “A High speed, Low Voltage to High Voltage Level Shifter in Standard 1.2 V 0.13µm CMOS,” in Proc. IEEE International Conference on Electronics, Circuits and Systems, Dec. 2006, pp. 668–671. [23] G. Villar, E. Alarcon, F. Guinjoan, and A. Poveda, “Optimized design of MOS capacitors in standard CMOS technology and evaluation of their Equivalent Series Resistance for power applications,” in Proc. IEEE Int’l Symposium on Circuits and Systems, May 2003, pp. 451–454. [24] J. Ni, Z. Hong, and B. Y. Liu, “Improved on-chip components for integrated DC-DC converters in 0.13 µm CMOS,” in Proc. IEEE Eur. Solid-State Cir- cuits Conf., Sep. 2009, pp. 448–451. [25] M. Wens and M. Steyaert, “A fully-integrated 0.18µm cmos dc-dc step-down converter, using a bondwire spiral inductor,” in Proc. IEEE Custom Integrated Circuits Conference, Sep. 2008, pp. 17–20. [26] W. Kim, D. Brooks, and G. Wei, “A fully-integrated 3-level DC/DC converter for nanosecond-scale DVS with fast shunt regulation,” in Proc. IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), Feb. 2011, pp. 268–270.
|