跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2024/12/06 15:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳彥文
研究生(外文):Chen, Yen-Wen
論文名稱:透過神經模糊網路的非線性適應性強健追蹤控制實現11個自由度之人型雙足機器人模仿真人行走動作
論文名稱(外文):The Imitation of Real Human Walking Locomotion Realized on 11-DOFs Humanoid Biped Robot Based on The Nonlinear Adaptive Robust Tracking Control via Neural Fuzzy Networks
指導教授:陳博現
指導教授(外文):Chen, Bor-Sen
口試委員:林志民陳博現曾仲熙黃志良李柏坤
口試日期:2011-7-29
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:74
中文關鍵詞:強健控制雙足機器人神經模糊網路非線性控制適應性控制
外文關鍵詞:robust controlbiped robotneural fuzzy networknonlinear controladaptive control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:1
This study presents a walking locomotion of whole body humanoid robot via real human movements. The humanoid robot contains the torso, the upper and lower arms, the thighs, the shanks and the feet, 11 segments totally, which is a complex robot model possessing 11 degree of freedoms (11-DOFs). In order to imitate the real human walking locomotion, we record the profile of each segments of body while human walking, and provide the profile to the humanoid robot to mimic and track for the purpose of making the robot be similar to human. Moreover, for the sake of constructing the robot walking control problem with more authenticity, several effects of perturbation when human walking, such as the ground reaction force when the body applies forces on the ground, the impulse disturbance produced from the feet colliding with the ground, and the internal electromyo noisy interference in organism, are all considered in the whole body humanoid robot walking control design. Through the nonlinear adaptive tracking control via the neural fuzzy networks, we realize the whole body humanoid robot to imitate the real human walking trajectories. Therefore, the robust tracking control algorithm in this paper is more close to walking control ability of human, and enables the humanoid robots to walk more similarly to real human beings.
本篇論文呈現具有人類真實行走動作的全身人形機器人控制,此一人型機器人包含軀幹、雙手的上下手臂,以及雙足的大腿、小腿和腳底板部份,共計考慮了11個身體部位,建構出一個具有11個自由度(11-DOFs)的複雜機器人系統。接著,為了模仿真實人類行走動作,我們紀錄了真人行走時各個重要部位的關節角度,並予以機器人模仿及追蹤,使機器人能行走的更接近真實人類。為了建構更具真實性之行走機器人系統控制,本論文探討了數種真實人類行走所遭遇的干擾,包含了人類行走時地面反作用力如何對機器人系統控制產生干擾,以及腳掌因踏觸地面及碰撞地面時產生的脈衝干擾,並考慮人體肌肉施力時所產生的額外肌肉放電干擾,皆在此篇論文當中討論之。如此建構出一個完整的人形行走機器人,同時考慮真實世界產生的雜訊干擾,接著透過神經模糊網路的非線性適應性 強健追蹤控制此複雜之行走機器人系統。先以適應性類神經模糊推論系統(ANFIS) 消除機器人控制系統大部分的非線性干擾以及系統不確定性之干擾,接著以 適應性控制方法對處理過後之系統殘餘誤差項進行強健控制,使機器人行走控制系統更加精準穩定,故我們實現了全身人形機器人模仿真實人類行走任務。因此,本篇論文的強健追蹤控制更加接近人類的行走身體控制能力,並使此人型機器人以更接近人類的動作方式行走。
Abstract i

Contents ii

List of Figures iii

List of Tables v

Chapter1 Introduction 1

Chapter2 11-DOFs Humanoid Robot Model 6
2.1 Real Human Walking Profile 6
2.2 Robot Dynamics with Real disturbances while Human Walk 8

Chapter3 Robust Adaptive Tracking Control Law 34

Chapter4 Simulation of Humanoid Robot Walking 59

Chapter5 Conclusion 71

Bibliography 72

[1] S. Coradeschi, et al., "Human-inspired robots," IEEE Intelligent Systems, pp. 74-85, 2006.
[2] I. W. Park, et al., "Control hardware integration of a biped humanoid robot with an android head," Robotics and Autonomous Systems, vol. 56, pp. 95-103, 2008.
[3] M. Friedmann, et al., "Adequate motion simulation and collision detection for soccer playing humanoid robots," Robotics and Autonomous Systems, vol. 57, pp. 786-795, 2009.
[4] E. Guizzo, "The man who made a copy of himself," Spectrum, IEEE, vol. 47, pp. 44-56, 2010.
[5] L. W. Barsalou, et al., "Cognition as coordinated non-cognition," Cognitive Processing, vol. 8, pp. 79-91, 2007.
[6] S. Thrun, et al., "Stanley: The robot that won the DARPA Grand Challenge," The 2005 DARPA Grand Challenge, pp. 1-43, 2007.
[7] I. Straub, et al., "Incorporated identity in interaction with a teleoperated android robot: A case study," 2010, pp. 119-124.
[8] Y. H. Wu, et al., "Designing robots for the elderly: Appearance issue and beyond," Archives of Gerontology and Geriatrics, 2011.
[9] K. Hosoda, et al., "Biped robot design powered by antagonistic pneumatic actuators for multi-modal locomotion," Robotics and Autonomous Systems, vol. 56, pp. 46-53, 2008.
[10] J. P. Ferreira, et al., "SVR Versus Neural-Fuzzy Network Controllers for the Sagittal Balance of a Biped Robot," Neural Networks, IEEE Transactions on, vol. 20, pp. 1885-1897, 2009.
[11] K. Naruse, "Biped walking pattern by virtual muscle oscillation in growing physical parameter of robot model," 2009, pp. 2696-2699.
[12] T. Wang and C. Chevallereau, "Stability analysis and time-varying walking control for an under-actuated planar biped robot," Robotics and Autonomous Systems, 2011.
[13] P. Manoonpong, et al., "Adaptive, fast walking in a biped robot under neuronal control and learning," PLoS Computational Biology, vol. 3, p. e134, 2007.
[14] T. Sato, et al., "Walking Trajectory Planning on Stairs Using Virtual Slope for Biped Robots," Industrial Electronics, IEEE Transactions on, pp. 1-1, 2011.
[15] Y. Hu, et al., "Feedback Control of Planar Biped Robot With Regulable Step Length and Walking Speed," Robotics, IEEE Transactions on, pp. 1-8, 2011.
[16] N. T. Phuong, et al., "An optimal control method for biped robot with stable walking gait," 2008, pp. 211-218.
[17] M. Takahashi, et al., "Developing a mobile robot for transport applications in the hospital domain," Robotics and Autonomous Systems, vol. 58, pp. 889-899, 2010.
[18] Y. S. Cha, et al., "MAHRU-M: A mobile humanoid robot platform based on a dual-network control system and coordinated task execution," Robotics and Autonomous Systems, 2011.
[19] A. F. Tabar, et al., "Neural Network Control of a New Biped Robot Model with Back Propagation Algorithm," 2007, pp. 1191-1196.
[20] J. Li and W. Chen, "Modeling and control for a biped robot on uneven surfaces," 2009, pp. 2960-2965.
[21] C. M. Lin and C. H. Chen, "Robust fault-tolerant control for a biped robot using a recurrent cerebellar model articulation controller," Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 37, pp. 110-123, 2007.
[22] S. Kajita, et al., "Biped walking pattern generation by using preview control of zero-moment point," 2003, pp. 1620-1626 vol. 2.
[23] M. Vukobratovic and B. Borovac, "Zero-moment point-thirty five years of its life," International Journal of Humanoid Robotics, vol. 1, pp. 157-173, 2004.
[24] J. Strom, et al., "Omnidirectional walking using ZMP and preview control for the nao humanoid robot," RoboCup 2009: Robot Soccer World Cup XIII, pp. 378-389, 2010.
[25] T. Keller, et al., "Relationship between vertical ground reaction force and speed during walking, slow jogging, and running," Clinical Biomechanics, vol. 11, pp. 253-259, 1996.
[26] R. C. Browning and R. Kram, "Effects of obesity on the biomechanics of walking at different speeds," Medicine & Science in Sports & Exercise, vol. 39, p. 1632, 2007.
[27] M. W. Spong and M. Vidyasagar, Robot dynamics and control: Wiley-India, 2008.
[28] E. R. Westervelt, et al., Feedback control of dynamic bipedal robot locomotion: CRC Press, 2007.
[29] H. Funabashi, et al., "Disturbance compensating control of a biped walking machine based on reflex motions," JSME International Journal Series C, vol. 44, pp. 724-730, 2001.
[30] S. Morrison and J. Keogh, "Changes in the dynamics of tremor during goal-directed pointing," Human movement science, vol. 20, pp. 675-693, 2001.
[31] C. K. Hwang, et al., "Aiming trajectory analysis based on ARMAX model," 2008, pp. 3817-3822.
[32] G. Deuschl, et al., "The pathophysiology of parkinsonian tremor: a review," Journal of neurology, vol. 247, pp. 33-48, 2000.
[33] P. K. Artemiadis and K. J. Kyriakopoulos, "EMG-based teleoperation of a robot arm in planar catching movements using ARMAX model and trajectory monitoring techniques," 2006, pp. 3244-3249.
[34] R. Ortega and M. W. Spong, "Adaptive motion control of rigid robots: A tutorial," Automatica, vol. 25, pp. 877-888, 1989.
[35] B. CHEN and Y. C. CHANG, "Nonlinear mixed control for robust tracking design of robotic systems," int. J. control, vol. 67, pp. 837-857, 1997.
[36] Y. C. Chang and B. S. Chen, "A nonlinear adaptive tracking control design in robotic systems via neural networks," Control Systems Technology, IEEE Transactions on, vol. 5, pp. 13-29, 1996.
[37] J. S. R. Jang, et al., "Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review]," Automatic Control, IEEE Transactions on, vol. 42, pp. 1482-1484, 1997.
[38] K. Hornik Maxwell and H. White, "Multilayer feedforward networks are universal approximators," Neural networks, vol. 2, pp. 359-366, 1989.
[39] K. I. Funahashi, "On the approximate realization of continuous mappings by neural networks," Neural networks, vol. 2, pp. 183-192, 1989.
[40] T. Basar and P. Bernhard, -optimal control and related minimax design problems: a dynamic game approach vol. 5: Birkhauser, 1995.
[41] B. S. Chen, et al., "A nonlinear control design in robotic systems under parameter perturbation and external disturbance," International Journal of Control, vol. 59, pp. 439-461, 1994.
[42] P. De Leva, "Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters," Journal of biomechanics, vol. 29, pp. 1223-1230, 1996.
[43] M. Nordin and V. H. Frankel, Basic biomechanics of the musculoskeletal system: Lippincott Williams & Wilkins, 2001.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 25、陳信至,離職後競業禁止定型化契約條款之審查方法及判斷標準─由台灣高等法院92年度勞上易自第126號判決談起(中),萬國法律,第142期,2005年8月。
2. 25、陳信至,離職後競業禁止定型化契約條款之審查方法及判斷標準─由台灣高等法院92年度勞上易自第126號判決談起(中),萬國法律,第142期,2005年8月。
3. 25、陳信至,離職後競業禁止定型化契約條款之審查方法及判斷標準─由台灣高等法院92年度勞上易自第126號判決談起(中),萬國法律,第142期,2005年8月。
4. 24、陳信至,離職後競業禁止定型化契約條款之審查方法及判斷標準─由台灣高等法院92年度勞上易自第126號判決談起(上),萬國法律,第141期,2005年6月。
5. 24、陳信至,離職後競業禁止定型化契約條款之審查方法及判斷標準─由台灣高等法院92年度勞上易自第126號判決談起(上),萬國法律,第141期,2005年6月。
6. 24、陳信至,離職後競業禁止定型化契約條款之審查方法及判斷標準─由台灣高等法院92年度勞上易自第126號判決談起(上),萬國法律,第141期,2005年6月。
7. 23、梁宇賢,監察人之代表權及應否受競業禁止之限制,月旦法學雜誌,第50期,1999年7月。
8. 24、陳信至,離職後競業禁止定型化契約條款之審查方法及判斷標準─由台灣高等法院92年度勞上易自第126號判決談起(上),萬國法律,第141期,2005年6月。
9. 23、梁宇賢,監察人之代表權及應否受競業禁止之限制,月旦法學雜誌,第50期,1999年7月。
10. 23、梁宇賢,監察人之代表權及應否受競業禁止之限制,月旦法學雜誌,第50期,1999年7月。
11. 23、梁宇賢,監察人之代表權及應否受競業禁止之限制,月旦法學雜誌,第50期,1999年7月。
12. 22、梁宇賢,公司法上公司經理人之職權,月旦法學教室,第18期,2004年4月。
13. 22、梁宇賢,公司法上公司經理人之職權,月旦法學教室,第18期,2004年4月。
14. 22、梁宇賢,公司法上公司經理人之職權,月旦法學教室,第18期,2004年4月。
15. 22、梁宇賢,公司法上公司經理人之職權,月旦法學教室,第18期,2004年4月。
 
1. 從人類大腦內部模型觀點來探討具有估測器五自由度類人型雙足機器人行走的強健適應性模糊追蹤控制
2. Robust Filter and Control Design for Stochastic Partial Differential Systems with Poisson Noise
3. 透過宿主與病原體的互動網路來尋找白色念珠菌和斑馬魚之間與感染有關的蛋白質
4. 白色念珠菌感染過程中之宿主-病源菌交互作用的重要功能性模組探討
5. 考慮多目標功率控制在直序展頻分碼多工通訊系統
6. 利用白色念珠菌宿主與斑馬魚寄主之間的整合性動態網路預測細胞內與物種之間的蛋白質交互作用
7. 以強健性組合生物學之觀點設計生質能源代謝路徑:馬可夫隨機參數跳躍狀況及應用模糊化賽局理論
8. 在非線性不確定模糊控制系統下藉由模糊Pareto最佳化方法做多目標軌跡追蹤設計
9. Multiobjective H2/H∞ filter design for signal reconstruction of transmultiplexer systems
10. 啟動子-核糖體結合位庫的建立與基因電路規格設計上的應用
11. 具多再生能源與儲能設備家用微電網之開發
12. 具共同切換式整流器前級無位置感測永磁同步馬達驅動壓縮機及風扇之空調系統
13. 以開關式磁阻發電機為主具隔離型轉換器與插入式充電器直流微電網之開發
14. 以腕骨面積比為特徵的全自動骨齡判讀之研究
15. 彩色影像中紅綠藍成份強度變化對於人眼視覺所產生的隨機共振現象討論