|
1. Fidel PL, Jr.: Immunity to Candida. Oral Dis 2002, 8 Suppl 2:69-75. 2. Leroy O, Gangneux JP, Montravers P, Mira JP, Gouin F, Sollet JP, Carlet J, Reynes J, Rosenheim M, Regnier B et al: Epidemiology, management, and risk factors for death of invasive Candida infections in critical care: a multicenter, prospective, observational study in France (2005-2006). Crit Care Med 2009, 37(5):1612-1618. 3. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB: Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004, 39(3):309-317. 4. Kojic EM, Darouiche RO: Candida infections of medical devices. Clin Microbiol Rev 2004, 17(2):255-267. 5. Seneviratne CJ, Jin L, Samaranayake LP: Biofilm lifestyle of Candida: a mini review. Oral Dis 2008, 14(7):582-590. 6. Warnock DW: Trends in the epidemiology of invasive fungal infections. Nippon Ishinkin Gakkai Zasshi 2007, 48(1):1-12. 7. Barnes RA: Early diagnosis of fungal infection in immunocompromised patients. J Antimicrob Chemother 2008, 61 Suppl 1:i3-6. 8. Pfaller MA, Diekema DJ: Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007, 20(1):133-163. 9. Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR: Nonfilamentous C. albicans mutants are avirulent. Cell 1997, 90(5):939-949. 10. Kobayashi SD, Cutler JE: Candida albicans hyphal formation and virulence: is there a clearly defined role? Trends Microbiol 1998, 6(3):92-94. 11. Calderone RA, Fonzi WA: Virulence factors of Candida albicans. Trends Microbiol 2001, 9(7):327-335. 12. Cutler JE: Putative virulence factors of Candida albicans. Annu Rev Microbiol 1991, 45:187-218. 13. Navarro-Garcia F, Sanchez M, Nombela C, Pla J: Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev 2001, 25(2):245-268. 14. Leberer E, Ziegelbauer K, Schmidt A, Harcus D, Dignard D, Ash J, Johnson L, Thomas DY: Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p. Curr Biol 1997, 7(8):539-546. 15. Braun BR, van Het Hoog M, d'Enfert C, Martchenko M, Dungan J, Kuo A, Inglis DO, Uhl MA, Hogues H, Berriman M et al: A human-curated annotation of the Candida albicans genome. PLoS Genet 2005, 1(1):36-57. 16. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT et al: The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A 2004, 101(19):7329-7334. 17. Ihmels J, Bergmann S, Berman J, Barkai N: Comparative gene expression analysis by differential clustering approach: application to the Candida albicans transcription program. PLoS Genet 2005, 1(3):e39. 18. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M et al: Life with 6000 genes. Science 1996, 274(5287):546, 563-547. 19. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB: Molecular evidence for the early colonization of land by fungi and plants. Science 2001, 293(5532):1129-1133. 20. Meeker ND, Trede NS: Immunology and zebrafish: spawning new models of human disease. Dev Comp Immunol 2008, 32(7):745-757. 21. Sullivan C, Kim CH: Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol 2008, 25(4):341-350. 22. Amsterdam A, Hopkins N: Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet 2006, 22(9):473-478. 23. Postlethwait J, Amores A, Force A, Yan YL: The zebrafish genome. Methods Cell Biol 1999, 60:149-163. 24. Chao CC, Hsu PC, Jen CF, Chen IH, Wang CH, Chan HC, Tsai PW, Tung KC, Wang CH, Lan CY et al: Zebrafish as a Model Host for Candida albicans Infection. Infection and Immunity 2010, 78(6):2512-2521. 25. Wang YC, Chen BS: Integrated cellular network of transcription regulations and protein-protein interactions. BMC Syst Biol 2010, 4:20. 26. Yan Yu Chen1 C-CC, Fu-Chen Liu2, Po-Chen Hsu3, David Shan Hill Wong1§, Yung Jen Chuang2§, Chung-Yu Lan3§, Wen-Ping Hsieh4: Dynamic transcriptomic analysis of Candida albicans and zebrafish host interactions revealed iron competition is critical for fungal virulence. Submitted to Molecular Systems Biology 2011. 27. Mullin JM, Agostino N, Rendon-Huerta E, Thornton JJ: Keynote review: epithelial and endothelial barriers in human disease. Drug Discov Today 2005, 10(6):395-408. 28. Wachtler B, Wilson D, Haedicke K, Dalle F, Hube B: From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One 2011, 6(2):e17046. 29. Alon U: An introduction to systems biology : design principles of biological circuits. Boca Raton, FL: Chapman & Hall/CRC; 2007. 30. Coleman TF, Hulbert LA: A Direct Active Set Algorithm for Large Sparse Quadratic Programs with Simple Bounds. Math Program 1989, 45(3):373-406. 31. Bar-Joseph Z, Gerber G, Gifford DK, Jaakkola TS, Simon I: A new approach to analyzing gene expression time series data. In: Proceedings of the sixth annual international conference on Computational biology. Washington, DC, USA: ACM; 2002: 39-48. 32. De Boor C: A practical guide to splines : with 32 figures, Rev. edn. New York: Springer; 2001. 33. Orntoft TF, Thykjaer T, Waldman FM, Wolf H, Celis JE: Genome-wide study of gene copy numbers, transcripts, and protein levels in pairs of non-invasive and invasive human transitional cell carcinomas. Mol Cell Proteomics 2002, 1(1):37-45. 34. Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS: Single-cell proteomic analysis of S-cerevisiae reveals the architecture of biological noise. Nature 2006, 441(7095):840-846. 35. Akaike H: New Look at Statistical-Model Identification. Ieee T Automat Contr 1974, Ac19(6):716-723. 36. Johansson R: System modeling and identification. Englewood Cliffs, NJ: Prentice Hall; 1993. 37. Wu WS, Li WH, Chen BS: Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data. BMC Bioinformatics 2007, 8:188. 38. Edwards JE, Jr., Rotrosen D, Fontaine JW, Haudenschild CC, Diamond RD: Neutrophil-mediated protection of cultured human vascular endothelial cells from damage by growing Candida albicans hyphae. Blood 1987, 69(5):1450-1457. 39. Hummert S, Hummert C, Schroter A, Hube B, Schuster S: Game theoretical modelling of survival strategies of Candida albicans inside macrophages. J Theor Biol 2010, 264(2):312-318. 40. Efron B, Tibshirani R: An introduction to the bootstrap. New York: Chapman & Hall; 1993. 41. Dyer SA, Dyer JS: Cubic-spline interpolation: Part 1. Ieee Instru Meas Mag 2001, 4(1):44-46. 42. Esser K: The mycota : a comprehensive treatise on fungi as experimental systems for basic and applied research, 2nd edn. Berlin ; New York: Springer; 2008. 43. Csank C, Schroppel K, Leberer E, Harcus D, Mohamed O, Meloche S, Thomas DY, Whiteway M: Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 1998, 66(6):2713-2721. 44. Monge RA, Roman E, Nombela C, Pla J: The MAP kinase signal transduction network in Candida albicans. Microbiology 2006, 152(Pt 4):905-912. 45. Dhillon NK, Sharma S, Khuller GK: Signaling through protein kinases and transcriptional regulators in Candida albicans. Crit Rev Microbiol 2003, 29(3):259-275. 46. Lengeler KB, Davidson RC, D'Souza C, Harashima T, Shen WC, Wang P, Pan X, Waugh M, Heitman J: Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 2000, 64(4):746-785. 47. Bockmuhl DP, Krishnamurthy S, Gerads M, Sonneborn A, Ernst JF: Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans. Mol Microbiol 2001, 42(5):1243-1257. 48. Uhl MA, Biery M, Craig N, Johnson AD: Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C.albicans. Embo J 2003, 22(11):2668-2678. 49. Yaar L, Mevarech M, Koltin Y: A Candida albicans RAS-related gene (CaRSR1) is involved in budding, cell morphogenesis and hypha development. Microbiol-Uk 1997, 143:3033-3044. 50. Woo M, Lee K, Song K: MYO2 is not essential for viability, but is required for polarized growth and dimorphic switches in Candida albicans. Fems Microbiol Lett 2003, 218(1):195-202. 51. Dunkler A, Wendland J: Candida albicans RHO-type GTPase-encoding genes required for polarized cell growth and cell separation. Eukaryotic Cell 2007, 6(5):844-854. 52. Li MC, Martin SJ, Bruno VM, Mitchell AP, Davis DA: Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs. Eukaryotic Cell 2004, 3(3):741-751. 53. Uhl MA, Biery M, Craig N, Johnson AD: Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C.albicans. Embo J 2003, 22(11):2668-2678. 54. Barabasi AL, Oltvai ZN: Network biology: understanding the cell's functional organization. Nat Rev Genet 2004, 5(2):101-113. 55. Jeong H, Mason SP, Barabasi AL, Oltvai ZN: Lethality and centrality in protein networks. Nature 2001, 411(6833):41-42. 56. Roig P, Gozalbo D: Depletion of polyubiquitin encoded by the UBI4 gene confers pleiotropic phenotype to Candida albicans cells. Fungal Genet Biol 2003, 39(1):70-81. 57. Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H, Perfect JR, Heitman J, Cowen LE: Hsp90 Orchestrates Temperature-Dependent Candida albicans Morphogenesis via Ras1-PKA Signaling. Curr Biol 2009, 19(8):621-629. 58. Zheng X, Wang Y: Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. Embo J 2004, 23(8):1845-1856. 59. Leberer E, Harcus D, Broadbent ID, Clark KL, Dignard D, Ziegelbauer K, Schmidt A, Gow NAR, Brown AJP, Thomas DY: Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. P Natl Acad Sci USA 1996, 93(23):13217-13222. 60. Lu Y, Su C, Mao XM, PalaRaniga P, Liu HP, Chen JY: Efg1-mediated Recruitment of NuA4 to Promoters Is Required for Hypha-specific Swi/Snf Binding and Activation in Candida albicans. Mol Biol Cell 2008, 19(10):4260-4272. 61. Leng P, Sudbery PE, Brown AJP: Rad6p represses yeast-hypha morphogenesis in the human fungal pathogen Candida albicans. Mol Microbiol 2000, 35(5):1264-1275. 62. Brand A, Lee K, Veses V, Gow NAR: Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in Candida albicans hyphae. Mol Microbiol 2009, 71(5):1155-1164. 63. Nobile CJ, Bruno VM, Richard ML, Davis DA, Mitchell AP: Genetic control of chlamydospore formation in Candida albicans. Microbiology 2003, 149(Pt 12):3629-3637. 64. Kang CM, Jiang YW: Genome-wide survey of non-essential genes required for slowed DNA synthesis-induced filamentous growth in yeast. Yeast 2005, 22(2):79-90. 65. Martin R, Walther A, Wendland H: Ras1-induced hyphal development in Candida albicans requires the formin Bni1. Eukaryotic Cell 2005, 4(10):1712-1724. 66. Ghiselli G: SMC3 knockdown triggers genomic instability and p53-dependent apoptosis in human and zebrafish cells. Mol Cancer 2006, 5:-. 67. Duckett CS, Perkins ND, Kowalik TF, Schmid RM, Huang ES, Baldwin AS, Jr., Nabel GJ: Dimerization of NF-KB2 with RelA(p65) regulates DNA binding, transcriptional activation, and inhibition by an I kappa B-alpha (MAD-3). Mol Cell Biol 1993, 13(3):1315-1322. 68. Liden J, Ek A, Palmberg L, Okret S, Larsson K: Organic dust activates NF-kappa B in lung epithelial cells. Resp Med 2003, 97(8):882-892. 69. Anto RJ, Maliekal TT, Karunagaran D: L-929 cells harboring ectopically expressed RelA resist curcumin-induced apoptosis. J Biol Chem 2000, 275(21):15601-15604. 70. Phelan PE, Mellon MT, Kim CH: Functional characterization of full-length TLR3, IRAK-4, and TRAF6 in zebrafish (Danio rerio). Mol Immunol 2005, 42(9):1057-1071. 71. Nykjaer A, Willnow TE, Petersen CM: p75(NTR)-live or let die. Curr Opin Neurobiol 2005, 15(1):49-57. 72. Grassme H, Jendrossek V, Gulbins E: Molecular mechanisms of bacteria induced apoptosis. Apoptosis 2001, 6(6):441-445. 73. Weinrauch Y, Zychlinsky A: The induction of apoptosis by bacterial pathogens. Annu Rev Microbiol 1999, 53:155-187. 74. Weissman Z, Kornitzer D: A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 2004, 53(4):1209-1220. 75. Almeida RS, Wilson D, Hube B: Candida albicans iron acquisition within the host. Fems Yeast Res 2009, 9(7):1000-1012. 76. Fratti RA, Belanger PH, Ghannoum MA, Edwards JE, Jr., Filler SG: Endothelial cell injury caused by Candida albicans is dependent on iron. Infect Immun 1998, 66(1):191-196. 77. Almeida RS, Brunke S, Albrecht A, Thewes S, Laue M, Edwards JE, Filler SG, Hube B: the hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog 2008, 4(11):e1000217. 78. Hrmova M, Drobnica L: Induction of Mycelial Type of Development in Candida-Albicans by Low Glucose-Concentration. Mycopathologia 1981, 76(2):83-96. 79. Vidotto V, Accattatis G, Zhang Q, Campanini G, Aoki S: Glucose influence on germ tube production in Candida albicans. Mycopathologia 1996, 133(3):143-147. 80. Hudson DA, Sascia OL, Sanders RJ, Norris GE, Edwards PJB, Sullivan PA, Farley PC: Identification of the dialysable serum inducer of germ-tube formation in Candida albicans. Microbiol-Sgm 2004, 150:3041-3049. 81. Paranjape V, Datta A: Role of Nutritional-Status of the Cell in Ph Regulated Dimorphism of Candida-Albicans. Fems Microbiol Lett 1991, 80(2-3):333-336. 82. Wheeler RT, Fink GR: A drug-sensitive genetic network masks fungi from the immune system. Plos Pathogens 2006, 2(4):328-339. 83. Wheeler RT, Kombe D, Agarwala SD, Fink GR: Dynamic, Morphotype-Specific Candida albicans beta-Glucan Exposure during Infection and Drug Treatment. Plos Pathogens 2008, 4(12):-. 84. Singleton DR, Masuoka J, Hazen KC: Cloning and analysis of a Candida albicans gene that affects cell surface hydrophobicity. J Bacteriol 2001, 183(12):3582-3588. 85. Singleton DR, Fidel PL, Jr., Wozniak KL, Hazen KC: Contribution of cell surface hydrophobicity protein 1 (Csh1p) to virulence of hydrophobic Candida albicans serotype A cells. Fems Microbiol Lett 2005, 244(2):373-377. 86. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13(11):2498-2504. 87. Barsky A, Gardy JL, Hancock RE, Munzner T: Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 2007, 23(8):1040-1042.
|