跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 13:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余建賢
研究生(外文):Yu, Chien-Hsien
論文名稱:On the existence of a double S-shaped bifurcation curve with six positive solutions for a combustion problem
論文名稱(外文):一燃燒問題含有六正解的雙重S形分枝曲線的存在性
指導教授:王信華
指導教授(外文):Wang, Shin-Hwa
口試委員:王懷權王信華葉宗鑫
口試日期:2011-7-14
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:22
中文關鍵詞:分枝燃燒問題
外文關鍵詞:bifurcationcombustiom problem
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
We study the bifurcation curve of positive solutions of the combustion problem with nonlinear boundary conditions given by
-u′′(x)=λexp(((βu)/(β+u))), 0<x<1,
u(0)=0,
((u(1))/(u(1)+1))u′(1)+[1-((u(1))/(u(1)+1))]u(1)=0,
where λ>0 is called the Frank--Kamenetskii parameter or ignition parameter, β>0 is the activation energy parameter, u(x) is the dimensionless temperature, and the reaction term exp(((βu)/(β+u))) is the temperature dependence obeying the simple Arrhenius reaction-rate law in irreversible chemical reaction kinetics. We prove rigorously that, for β>β₁≈6.459 for some constant β₁, the bifurcation curve is double S-shaped on the (λ,∥u∥_{∞})-plane and the problem has at least six positive solutions for a certain range of positive λ. We give rigorous proofs of some computational results of Goddard II, Shivaji and Lee
Abstract......................1
Introduction..................2
Main results..................5
Lemma.........................7
Proof of the main results.....10
Appendix......................18
1. J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Springer-Verlag, New York, NY, USA, 1989.
2. T. Boddington, P. Gray, and C. Robinson, "Thermal explosion and the disappearance of criticality at small activation energies: exact results for the slab," Proceedings of the Royal Society of London. Series A, vol. 368, no. 1735, pp. 441--461, 1979.
3. K. J. Brown, M. M. A. Ibrahim, and R. Shivaji, "S-shaped bifurcation curves," Nonlinear Analysis: Theory, Methods & Applications, vol. 5, no. 5, pp. 475--486, 1981.
4. R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Chichester, UK, 2003.
5. R. S. Cantrell and C. Cosner, "Density dependent behavior at habitat boundaries and the Allee effect," Bulletin of Mathematical Biology, vol. 69, no. 7, pp. 2339--2360, 2007.
6. R. S. Cantrell, C. Cosner, and S. Martínez, "Global bifurcation of solutions to diffusive logistic equations on bounded domains subject to nonlinear boundary conditions," Proceedings of the Royal Society of Edinburgh, Section A, vol. 139, no. 1, pp. 45--56, 2009.
7. J. Goddard II, R. Shivaji, and E. K. Lee, "A double S-shaped bifurcation curve for a reaction-diffusion model with nonlinear boundary conditions," Boundary Value Problems, 2010, Article ID 357542, 23 pages.
8. J. Goddard II, R. Shivaji, and E. K. Lee, "Population models with nonlinear boundary conditions," Electronic Journal of Differential Equations, vol. 375, pp. 135--149, 2010.
9. J. Goddard II, R. Shivaji, and E. K. Lee, "Diffusive logistic equation with nonlinear boundary conditions," Journal of Mathematical Analysis and Applications, vol. 375, no. 1, pp. 365--370, 2011.
10. K.-C. Hung and S.-H. Wang, "A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem," Journal of Differential Equations, vol. 251, pp. 223-237, 2011.
11. T. Laetsch, "The number of solutions of a nonlinear two point boundary value problem," Indiana University Mathematics Journal, vol. 20, pp. 1--13, 1970.
12. M. Mimura and K. Sakamoto, Multi-dimensional transition layers for an exothermic reaction-diffusion system in long cylindrical domains, Journal of Mathematical Sciences, The University of Tokyo, vol. 3, pp. 109--179, 1996. 3 (1996) 109--179. J. Math. Sci. Univ. Tokyo
13. S.-H. Wang, "On S-shaped bifurcation curves," Nonlinear Analysis: Theory, Methods and Applications, vol. 22, no. 12, pp. 1475--1485, 1994.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文