|
1. Paschen, W. and A. Frandsen, Endoplasmic reticulum dysfunction a common denominator for cell injury in acute and degenerative diseases of the brain? Journal of Neurochemistry, 2001. 79: p. 719-725. 2. Lander, E.S., Initial sequencing and analysis of the human genome. Nature, 2001. 409: p. 860-921. 3. Lindholm, D., H. Wootz, and L. Korhonen, ER stress and neurodegenerative diseases. Cell Death and Differentiation, 2006. 13(3): p. 385-392. 4. Weihl, C.C., Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation. Human Molecular Genetics, 2005. 15(2): p. 189-199. 5. Sayeed, A. and D.T.W. Ng, Search and Destroy: ER Quality Control and ER-Associated Protein Degradation. Critical Reviews in Biochemistry and Molecular Biology, 2005. 40(2): p. 75-91. 6. Ron, D. and P. Walter, Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews Molecular Cell Biology, 2007. 8(7): p. 519-529. 7. Vembar, S.S. and J.L. Brodsky, One step at a time: endoplasmic reticulum-associated degradation. Nature Reviews Molecular Cell Biology, 2008. 9(12): p. 944-957. 8. Hammond, C. and A. Helenius, Quality control in the secretory pathway Current Opinion in Cell Biology, 1995. 7(4): p. 523-529. 9. Ellgaard, L. and A. Helenius, Quality control in the endoplasmic reticulum. Nature Reviews Molecular Cell Biology, 2003. 4(3): p. 181-191. 10. Helenius, A. and M. Aebi, Roles Ofn-Linkedglycans in Theendoplasmicreticulum. Annual Review of Biochemistry, 2004. 73(1): p. 1019-1049. 11. Caramelo, J.J. and A.J. Parodi, Getting In and Out from Calnexin/Calreticulin Cycles. Journal of Biological Chemistry, 2008. 283(16): p. 10221-10225. 12. Molinari, M., et al., Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Molecular Cell, 2004. 13: p. 125-135. 13. Molinari, M., Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. The Journal of Cell Biology, 2002. 158(2): p. 247-257. 14. Molinari, M., Role of EDEM in the Release of Misfolded Glycoproteins from the Calnexin Cycle. Science, 2003. 299(5611): p. 1397-1400. 15. Oda, Y., et al., EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science, 2003. 299: p. 1394-1397. 16. Christianson, J.C., et al., OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1?SEL1L ubiquitin ligase complex for ERAD. Nature Cell Biology, 2008. 10(3): p. 272-282. 17. Cormier, J.H., et al., EDEM1 Recognition and Delivery of Misfolded Proteins to the SEL1L-Containing ERAD Complex. Molecular Cell, 2009. 34(5): p. 627-633. 18. Kaufman, R.J., Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes & Development, 1999. 13: p. 1211-1233. 19. Shen, X., The unfolded protein response?a stress signaling pathway of the endoplasmic reticulum. Journal of Chemical Neuroanatomy, 2004. 20. Mori, K., Signalling Pathways in the Unfolded Protein Response: Development from Yeast to Mammals. Journal of Biochemistry, 2009. 146(6): p. 743-750. 21. Lu, P.D., et al., Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. The EMBO Journal, 2004. 23: p. 169-179. 22. Schröder, M. and R.J. Kaufman, The Mammalian Unfolded Protein Response. Annual Review of Biochemistry, 2005. 74(1): p. 739-789. 23. Bernales, S., F.R. Papa, and P. Walter, Intracellular Signaling by the Unfolded Protein Response. Annual Review of Cell and Developmental Biology, 2006. 22(1): p. 487-508. 24. Lippincott-Schwartz, J., et al., Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell, 1988. 54(2): p. 209-20. 25. Klausner, R.D. and R. Sitia, Protein degradation in the endoplasmic reticulum. Cell, 1990. 62(4): p. 611-4. 26. Tsai, B., Y. Ye, and T.A. Rapoport, Retro-Translocation of Proteins from the Endoplasmic Reticulum into the Cytosol. Nature Reviews Molecular Cell Biology, 2002. 3(4): p. 246-255. 27. Vashist, S., Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. The Journal of Cell Biology, 2004. 165(1): p. 41-52. 28. Carvalho, P., V. Goder, and T.A. Rapoport, Distinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER Proteins. Cell, 2006. 126(2): p. 361-373. 29. Li, G., The AAA ATPase p97 links peptide N-glycanase to the endoplasmic reticulum-associated E3 ligase autocrine motility factor receptor. Proceedings of the National Academy of Sciences, 2006. 103(22): p. 8348-8353. 30. Kreft, S.G., Membrane Topology of the Yeast Endoplasmic Reticulum-localized Ubiquitin Ligase Doa10 and Comparison with Its Human Ortholog TEB4 (MARCH-VI). Journal of Biological Chemistry, 2005. 281(8): p. 4646-4653. 31. Kreft, S.G. and M. Hochstrasser, An Unusual Transmembrane Helix in the Endoplasmic Reticulum Ubiquitin Ligase Doa10 Modulates Degradation of Its Cognate E2 Enzyme. Journal of Biological Chemistry, 2011. 286(23): p. 20163-20174. 32. Denic, V., E.M. Quan, and J.S. Weissman, A Luminal Surveillance Complex that Selects Misfolded Glycoproteins for ER-Associated Degradation. Cell, 2006. 126(2): p. 349-359. 33. Gauss, R., et al., A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nature Cell Biology, 2006. 8(8): p. 849-854. 34. Kokame, K., Herp, a New Ubiquitin-like Membrane Protein Induced by Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2000. 275(42): p. 32846-32853. 35. Schulze, A., et al., The Ubiquitin-domain Protein HERP forms a Complex with Components of the Endoplasmic Reticulum Associated Degradation Pathway. Journal of Molecular Biology, 2005. 354(5): p. 1021-1027. 36. Mueller, B., B.N. Lilley, and H.L. Ploegh, SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. The Journal of Cell Biology, 2006. 175(2): p. 261-270. 37. Lilley, B.N. and H.L. Ploegh, A membrane protein required for dislocation of misfolded proteins from the ER. Nature, 2004. 429: p. 834-840. 38. Ye, Y., et al., A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature, 2004. 429(24): p. 841-847. 39. Bernasconi, R., et al., A Dual Task for the Xbp1-responsive OS-9 Variants in the Mammalian Endoplasmic Reticulum: INHIBITING SECRETION OF MISFOLDED PROTEIN CONFORMERS AND ENHANCING THEIR DISPOSAL. Journal of Biological Chemistry, 2008. 283(24): p. 16446-16454. 40. Olivari, S. and M. Molinari, Glycoprotein folding and the role of EDEM1, EDEM2 and EDEM3 in degradation of folding-defective glycoproteins. FEBS Letters, 2007. 581(19): p. 3658-3664. 41. Nakatsukasa, K. and J.L. Brodsky, The Recognition and Retrotranslocation of Misfolded Proteins from the Endoplasmic Reticulum. Traffic, 2008. 9(6): p. 861-870. 42. Hirsch, C., et al., The ubiquitylation machinery of the endoplasmic reticulum. Nature, 2009. 458(7237): p. 453-460. 43. Ingham, P.W. and A.P. McMahon, Hedgehog signaling in animal development: paradigms and principles. Genes Dev, 2001. 15(23): p. 3059-87. 44. Torroja, C., N. Gorfinkiel, and I. Guerrero, Mechanisms of Hedgehog gradient formation and interpretation. J Neurobiol, 2005. 64(4): p. 334-56. 45. Ogden, S., Regulation of Hedgehog signaling: a complex story. Biochemical Pharmacology, 2004. 67(5): p. 805-814. 46. Kalderon, D., The mechanism of hedgehog signal transduction. Stem Cells and Development, 2005. 33: p. 1509-1512. 47. Lee, J.J., et al., Autoproteolysis in hedgehog protein biogenesis. Science, 1994. 266(5190): p. 1528-37. 48. Porter, J.A., et al., Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell, 1996. 86: p. 21-34. 49. Porter, J.A., et al., The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature, 1995. 374: p. 363-366. 50. Porter, J.A., K.E. Young, and P.A. Beachy, Cholesterol modification of hedgehog signaling proteins in animal development. Science, 1996. 274(5285): p. 255-9. 51. Chamoun, Z., Skinny Hedgehog, an Acyltransferase Required for Palmitoylation and Activity of the Hedgehog Signal. Science, 2001. 293(5537): p. 2080-2084. 52. Chen, X., et al., Processing and turnover of the Hedgehog protein in the endoplasmic reticulum. The Journal of Cell Biology, 2011. 192(5): p. 825-838. 53. Bernardi, K.M., et al., Derlin-1 Facilitates the Retro-Translocation of Cholera Toxin. Molecular Biology of the Cell, 2007. 19(3): p. 877-884. 54. Bernardi, K.M., et al., The E3 Ubiquitin Ligases Hrd1 and gp78 Bind to and Promote Cholera Toxin Retro-Translocation. Molecular Biology of the Cell, 2010. 21(1): p. 140-151. 55. Sun, F., et al., Derlin-1 Promotes the Efficient Degradation of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and CFTR Folding Mutants. Journal of Biological Chemistry, 2006. 281(48): p. 36856-36863. 56. Ye, Y., Inaugural Article: Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proceedings of the National Academy of Sciences, 2005. 102(40): p. 14132-14138. 57. Crawshaw, S.G., et al., The oligomeric state of Derlin-1 is modulated by endoplasmic reticulum stress. Molecular Membrane Biology, 2007. 24(2): p. 113-120. 58. Lilley, B.N., Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proceedings of the National Academy of Sciences, 2005. 102(40): p. 14296-14301. 59. Oda, Y., Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. The Journal of Cell Biology, 2006. 172(3): p. 383-393. 60. Lilley, B.N., et al., Murine Polyomavirus Requires the Endoplasmic Reticulum Protein Derlin-2 To Initiate Infection. Journal of Virology, 2006. 80(17): p. 8739-8744. 61. Dougan, S.K., et al., Derlin-2-Deficient Mice Reveal an Essential Role for Protein Dislocation in Chondrocytes. Molecular and Cellular Biology, 2011. 31(6): p. 1145-1159. 62. Knop, M., et al., Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO, 1996. 15: p. 753-763. 63. Katiyar, S., The Retrotranslocation Protein Derlin-1 Binds Peptide:N-Glycanase to the Endoplasmic Reticulum. Molecular Biology of the Cell, 2005. 16(10): p. 4584-4594. 64. CLELAND, W.W., Dithiothreitol, a New Protective Reagent for SH Groups*. Biochemistry, 1964. 3(4): p. 480-482. 65. Marius K, l., et al., Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. The EMBO Journal 2005. 24: p. 464-472. 66. Lei, X. and Y.-M. Li, The Processing of Human Rhomboid Intramembrane Serine Protease RHBDL2 Is Required for Its Proteolytic Activity. Journal of Molecular Biology, 2009. 394(5): p. 815-825. 67. Wiertz, E.J., et al., Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature, 1996. 384(6608): p. 432-8. 68. Plemper, R.K., et al., Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature, 1997. 388(6645): p. 891-5. 69. Zhou, M. and R. Schekman, The engagement of Sec61p in the ER dislocation process. Mol Cell, 1999. 4(6): p. 925-34. 70. Sato, B.K., et al., Misfolded Membrane Proteins Are Specifically Recognized by the Transmembrane Domain of the Hrd1p Ubiquitin Ligase. Molecular Cell, 2009. 34(2): p. 212-222. 71. Horn, S.C., et al., Usa1 Functions as a Scaffold of the HRD-Ubiquitin Ligase. Molecular Cell, 2009. 36(5): p. 782-793.
|