跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/26 22:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭慧婷
研究生(外文):Hsiao, Hui-Ting
論文名稱:The role of Derlin-2 in ER-associated degradation of Human Sonic Hedgehog
論文名稱(外文):探討Derlin-2 在人類Sonic Hedgehog 於內質網相關蛋白質降解機制中的角色
指導教授:陳新陳新引用關係陳令儀
指導教授(外文):Chen, XinChen, Lin-Yi
口試委員:Chi-Yuan Chou
口試日期:2011-7-19
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
中文關鍵詞:Endoplasmic reticulumER-associated degradationoligomerization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:812
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
Endoplasmic reticulum (ER) is the major site of protein synthesis and maturation in eukaryotes. Inside ER, the inability of newly synthesized secretory and membrane proteins to adopt the native conformations lead to their retrotranslocation into the cytosol and subsequent clearance by 26S proteasome. This pathway is termed the ER-associated degradation (ERAD) pathway. A fundamentally important question to understand the mechanism of ERAD is the identity of retrotranslocon. In this thesis, an ER membrane protein Derlin-2 (Der2) is discovered required for luminal Human Sonic hedgehog (HShh) degradation. SiRNA experiment to knockdown the expression of Derlin-2 blocks the ERAD of HShh precursor and its C-fragment. Co-immunoprecipitation shows that HShh interacts with Derlin-2. Moreover, from the results of co-immunoprecipitation and chemical crosslinking experiments, Derlin-2 is discovered forming homo-oligomers, which raised the possibility that oligomeric Derlin-2 forms the retrotranslocation channel for ERAD of HShh. The oligomerization does not depend on intermolecular disulfide bond. Because of Derlin-2 oligomerization, the domain important for Derlin-2 oligomerization will be examined using various Derlin-2 constructs.
在真核生物體內,蛋白質會在內質網胞器中進行組裝、修飾以及摺疊形成成熟的蛋白質。在內質網中,這些新合成的分泌性蛋白或膜蛋白失去了它們正常的構型,將會被反向運輸從內質網基質送到細胞質內,由細胞質中的26S蛋白酶體降解。這一精密品質管控的過程就稱為內質網相關的蛋白質降解 (ERAD)。 因此,內質網膜上的反向運送通道,在內質網相關的蛋白質降解過程中伴演了不可或缺的角色。在此篇論文中,內質網的膜蛋白Derlin-2 (Der2) 被發現參與人類內質網基質Sonic hedgehog (HShh) 的降解過程。由SiRNA 的實驗,將Derlin-2 的蛋白表現量降低會抑致HShh的precursor以及HShh-C羧基片段進行內質網相關的蛋白質降解過程。由免疫沉澱的實驗,可以同時抓到Derlin-2 以及HShh,證明它們在同一個complex內。其次,在進行免疫沉澱法與化學性交聯作用的實驗中,我們發現Derlin-2可以自已形成多聚體型式,對於此Derlin-2多聚化現象, 我們提出了Derlin-2可能是膜上一個反向運輸的通道蛋白負責轉送HShh到細胞質。Derlin-2形成多聚體化的現象,並不是藉由蛋白質的cysteine胺基酸形成雙硫鍵而形成的。對於Derlin-2上的哪一區域是主要參與形成多聚化的,將藉由已建構好的各種Derlin-2 mutants去探討。
誌謝
Abstract 3
中文摘要 4
Contents 5
Introduction 8
The mechanisms involved in endoplasmic reticulum protein quality control 8
ER quality control (ERQC) 9
Signal integration in the ER unfolded protein response 11
ER-associated protein degradation 12
Components of the ERAD complex 13
Sonic hedgehog (Shh): The first endogenous luminal substrate identified by ERAD 16
Derlin family 18
Figure 1.UPR mechanism in mammalian. 21
Figure 2.Time-dependent phase shift in mammalian 21
Figure 3.Mechanism of protein degradation in yeast and mammalian cells 22
Figure 4.The processing of human Sonic hedgehog. 23
Table 1.Select components required for ERAD 24
Materials and Methods 25
Materials 25
Mammalian cell Culture and generation of stable cell lines 25
Immunoprecipitation 26
Immunoblotting 27
Immunofluorescence 28
Cycloheximide Chase Assays 28
Chemical cross-linking 29
Plasmid construction and site-directed mutagenesis 29
Result 31
Derlin-2 is required for degradation of HShh 31
Derlin-2 is an ER-resident protein 32
Derlin-2-GFP exerts dominant negative effect on HShh degradation 32
Derlin-2-Flag stable cells are functional for HShh degradation 33
Derlin-2 interacts with HShh 34
Derlin-2 interacts with each other 34
Derlin-2 forms homo-oligomers 35
Dimeric Derlin-2 is not mediated by disulfide bond 37
Construction of Derlin-2 mutants 38
Discussion 40
Reference 43
Figure 49
Figure 1. Derlin-2 is required for HShh degradation. 50
Figure 2. Subcellular localization of Derlin-2 51
Figure 3. Derlin-2-GFP fusion is dominant negative on HShh degradation 53
Figure 4. Derlin-2-Flag stable cells were functional for substrates
degradation 55
Figure 5. Derlin-2 is specifically associated with HShh. 56
Figure 6. Derlin-2 interacts with each other. 58
Figure 7. Derlin-2 forms homo-oligomers 60
Figure 8. Disulfide bond formation doesn’t contribute to the formation of dimeric Derlin-2. 62
Figure 9. Expression of Derlin-2 mutants. 65
Table S1. The list of antibodies. 66
Table S2. Primers used for constructs 66


1. Paschen, W. and A. Frandsen, Endoplasmic reticulum dysfunction a common denominator for cell injury in acute and degenerative diseases of the brain? Journal of Neurochemistry, 2001. 79: p. 719-725.
2. Lander, E.S., Initial sequencing and analysis of the human genome. Nature, 2001. 409: p. 860-921.
3. Lindholm, D., H. Wootz, and L. Korhonen, ER stress and neurodegenerative diseases. Cell Death and Differentiation, 2006. 13(3): p. 385-392.
4. Weihl, C.C., Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation. Human Molecular Genetics, 2005. 15(2): p. 189-199.
5. Sayeed, A. and D.T.W. Ng, Search and Destroy: ER Quality Control and ER-Associated Protein Degradation. Critical Reviews in Biochemistry and Molecular Biology, 2005. 40(2): p. 75-91.
6. Ron, D. and P. Walter, Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews Molecular Cell Biology, 2007. 8(7): p. 519-529.
7. Vembar, S.S. and J.L. Brodsky, One step at a time: endoplasmic reticulum-associated degradation. Nature Reviews Molecular Cell Biology, 2008. 9(12): p. 944-957.
8. Hammond, C. and A. Helenius, Quality control in the secretory pathway Current Opinion in Cell Biology, 1995. 7(4): p. 523-529.
9. Ellgaard, L. and A. Helenius, Quality control in the endoplasmic reticulum. Nature Reviews Molecular Cell Biology, 2003. 4(3): p. 181-191.
10. Helenius, A. and M. Aebi, Roles Ofn-Linkedglycans in Theendoplasmicreticulum. Annual Review of Biochemistry, 2004. 73(1): p. 1019-1049.
11. Caramelo, J.J. and A.J. Parodi, Getting In and Out from Calnexin/Calreticulin Cycles. Journal of Biological Chemistry, 2008. 283(16): p. 10221-10225.
12. Molinari, M., et al., Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Molecular Cell, 2004. 13: p. 125-135.
13. Molinari, M., Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. The Journal of Cell Biology, 2002. 158(2): p. 247-257.
14. Molinari, M., Role of EDEM in the Release of Misfolded Glycoproteins from the Calnexin Cycle. Science, 2003. 299(5611): p. 1397-1400.
15. Oda, Y., et al., EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science, 2003. 299: p. 1394-1397.
16. Christianson, J.C., et al., OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1?SEL1L ubiquitin ligase complex for ERAD. Nature Cell Biology, 2008. 10(3): p. 272-282.
17. Cormier, J.H., et al., EDEM1 Recognition and Delivery of Misfolded Proteins to the SEL1L-Containing ERAD Complex. Molecular Cell, 2009. 34(5): p. 627-633.
18. Kaufman, R.J., Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes & Development, 1999. 13: p. 1211-1233.
19. Shen, X., The unfolded protein response?a stress signaling pathway of the endoplasmic reticulum. Journal of Chemical Neuroanatomy, 2004.
20. Mori, K., Signalling Pathways in the Unfolded Protein Response: Development from Yeast to Mammals. Journal of Biochemistry, 2009. 146(6): p. 743-750.
21. Lu, P.D., et al., Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. The EMBO Journal, 2004. 23: p. 169-179.
22. Schröder, M. and R.J. Kaufman, The Mammalian Unfolded Protein Response. Annual Review of Biochemistry, 2005. 74(1): p. 739-789.
23. Bernales, S., F.R. Papa, and P. Walter, Intracellular Signaling by the Unfolded Protein Response. Annual Review of Cell and Developmental Biology, 2006. 22(1): p. 487-508.
24. Lippincott-Schwartz, J., et al., Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell, 1988. 54(2): p. 209-20.
25. Klausner, R.D. and R. Sitia, Protein degradation in the endoplasmic reticulum. Cell, 1990. 62(4): p. 611-4.
26. Tsai, B., Y. Ye, and T.A. Rapoport, Retro-Translocation of Proteins from the Endoplasmic Reticulum into the Cytosol. Nature Reviews Molecular Cell Biology, 2002. 3(4): p. 246-255.
27. Vashist, S., Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. The Journal of Cell Biology, 2004. 165(1): p. 41-52.
28. Carvalho, P., V. Goder, and T.A. Rapoport, Distinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER Proteins. Cell, 2006. 126(2): p. 361-373.
29. Li, G., The AAA ATPase p97 links peptide N-glycanase to the endoplasmic reticulum-associated E3 ligase autocrine motility factor receptor. Proceedings of the National Academy of Sciences, 2006. 103(22): p. 8348-8353.
30. Kreft, S.G., Membrane Topology of the Yeast Endoplasmic Reticulum-localized Ubiquitin Ligase Doa10 and Comparison with Its Human Ortholog TEB4 (MARCH-VI). Journal of Biological Chemistry, 2005. 281(8): p. 4646-4653.
31. Kreft, S.G. and M. Hochstrasser, An Unusual Transmembrane Helix in the Endoplasmic Reticulum Ubiquitin Ligase Doa10 Modulates Degradation of Its Cognate E2 Enzyme. Journal of Biological Chemistry, 2011. 286(23): p. 20163-20174.
32. Denic, V., E.M. Quan, and J.S. Weissman, A Luminal Surveillance Complex that Selects Misfolded Glycoproteins for ER-Associated Degradation. Cell, 2006. 126(2): p. 349-359.
33. Gauss, R., et al., A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nature Cell Biology, 2006. 8(8): p. 849-854.
34. Kokame, K., Herp, a New Ubiquitin-like Membrane Protein Induced by Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2000. 275(42): p. 32846-32853.
35. Schulze, A., et al., The Ubiquitin-domain Protein HERP forms a Complex with Components of the Endoplasmic Reticulum Associated Degradation Pathway. Journal of Molecular Biology, 2005. 354(5): p. 1021-1027.
36. Mueller, B., B.N. Lilley, and H.L. Ploegh, SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. The Journal of Cell Biology, 2006. 175(2): p. 261-270.
37. Lilley, B.N. and H.L. Ploegh, A membrane protein required for dislocation of misfolded proteins from the ER. Nature, 2004. 429: p. 834-840.
38. Ye, Y., et al., A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature, 2004. 429(24): p. 841-847.
39. Bernasconi, R., et al., A Dual Task for the Xbp1-responsive OS-9 Variants in the Mammalian Endoplasmic Reticulum: INHIBITING SECRETION OF MISFOLDED PROTEIN CONFORMERS AND ENHANCING THEIR DISPOSAL. Journal of Biological Chemistry, 2008. 283(24): p. 16446-16454.
40. Olivari, S. and M. Molinari, Glycoprotein folding and the role of EDEM1, EDEM2 and EDEM3 in degradation of folding-defective glycoproteins. FEBS Letters, 2007. 581(19): p. 3658-3664.
41. Nakatsukasa, K. and J.L. Brodsky, The Recognition and Retrotranslocation of Misfolded Proteins from the Endoplasmic Reticulum. Traffic, 2008. 9(6): p. 861-870.
42. Hirsch, C., et al., The ubiquitylation machinery of the endoplasmic reticulum. Nature, 2009. 458(7237): p. 453-460.
43. Ingham, P.W. and A.P. McMahon, Hedgehog signaling in animal development: paradigms and principles. Genes Dev, 2001. 15(23): p. 3059-87.
44. Torroja, C., N. Gorfinkiel, and I. Guerrero, Mechanisms of Hedgehog gradient formation and interpretation. J Neurobiol, 2005. 64(4): p. 334-56.
45. Ogden, S., Regulation of Hedgehog signaling: a complex story. Biochemical Pharmacology, 2004. 67(5): p. 805-814.
46. Kalderon, D., The mechanism of hedgehog signal transduction. Stem Cells and Development, 2005. 33: p. 1509-1512.
47. Lee, J.J., et al., Autoproteolysis in hedgehog protein biogenesis. Science, 1994. 266(5190): p. 1528-37.
48. Porter, J.A., et al., Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell, 1996. 86: p. 21-34.
49. Porter, J.A., et al., The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature, 1995. 374: p. 363-366.
50. Porter, J.A., K.E. Young, and P.A. Beachy, Cholesterol modification of hedgehog signaling proteins in animal development. Science, 1996. 274(5285): p. 255-9.
51. Chamoun, Z., Skinny Hedgehog, an Acyltransferase Required for Palmitoylation and Activity of the Hedgehog Signal. Science, 2001. 293(5537): p. 2080-2084.
52. Chen, X., et al., Processing and turnover of the Hedgehog protein in the endoplasmic reticulum. The Journal of Cell Biology, 2011. 192(5): p. 825-838.
53. Bernardi, K.M., et al., Derlin-1 Facilitates the Retro-Translocation of Cholera Toxin. Molecular Biology of the Cell, 2007. 19(3): p. 877-884.
54. Bernardi, K.M., et al., The E3 Ubiquitin Ligases Hrd1 and gp78 Bind to and Promote Cholera Toxin Retro-Translocation. Molecular Biology of the Cell, 2010. 21(1): p. 140-151.
55. Sun, F., et al., Derlin-1 Promotes the Efficient Degradation of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and CFTR Folding Mutants. Journal of Biological Chemistry, 2006. 281(48): p. 36856-36863.
56. Ye, Y., Inaugural Article: Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proceedings of the National Academy of Sciences, 2005. 102(40): p. 14132-14138.
57. Crawshaw, S.G., et al., The oligomeric state of Derlin-1 is modulated by endoplasmic reticulum stress. Molecular Membrane Biology, 2007. 24(2): p. 113-120.
58. Lilley, B.N., Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proceedings of the National Academy of Sciences, 2005. 102(40): p. 14296-14301.
59. Oda, Y., Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. The Journal of Cell Biology, 2006. 172(3): p. 383-393.
60. Lilley, B.N., et al., Murine Polyomavirus Requires the Endoplasmic Reticulum Protein Derlin-2 To Initiate Infection. Journal of Virology, 2006. 80(17): p. 8739-8744.
61. Dougan, S.K., et al., Derlin-2-Deficient Mice Reveal an Essential Role for Protein Dislocation in Chondrocytes. Molecular and Cellular Biology, 2011. 31(6): p. 1145-1159.
62. Knop, M., et al., Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO, 1996. 15: p. 753-763.
63. Katiyar, S., The Retrotranslocation Protein Derlin-1 Binds Peptide:N-Glycanase to the Endoplasmic Reticulum. Molecular Biology of the Cell, 2005. 16(10): p. 4584-4594.
64. CLELAND, W.W., Dithiothreitol, a New Protective Reagent for SH Groups*. Biochemistry, 1964. 3(4): p. 480-482.
65. Marius K, l., et al., Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. The EMBO Journal 2005. 24: p. 464-472.
66. Lei, X. and Y.-M. Li, The Processing of Human Rhomboid Intramembrane Serine Protease RHBDL2 Is Required for Its Proteolytic Activity. Journal of Molecular Biology, 2009. 394(5): p. 815-825.
67. Wiertz, E.J., et al., Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature, 1996. 384(6608): p. 432-8.
68. Plemper, R.K., et al., Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature, 1997. 388(6645): p. 891-5.
69. Zhou, M. and R. Schekman, The engagement of Sec61p in the ER dislocation process. Mol Cell, 1999. 4(6): p. 925-34.
70. Sato, B.K., et al., Misfolded Membrane Proteins Are Specifically Recognized by the Transmembrane Domain of the Hrd1p Ubiquitin Ligase. Molecular Cell, 2009. 34(2): p. 212-222.
71. Horn, S.C., et al., Usa1 Functions as a Scaffold of the HRD-Ubiquitin Ligase. Molecular Cell, 2009. 36(5): p. 782-793.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top