跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/30 00:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉易橓
研究生(外文):Yeh, Yi-Shun
論文名稱:直接甲醇燃料電池陽極端微噴霧式進料系統製作
論文名稱(外文):Direct methanol fuel cell anode mist jetting type fuel supplement system fabrication
指導教授:曾繁根曾繁根引用關係
指導教授(外文):Tseng, Fang-Gang
口試委員:凌守弘蘇育全
口試日期:2011-7-26
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:100
中文關鍵詞:直接甲醇燃料電池壓電式噴霧
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
摘要
燃料電池由陽極、陰極與電解質所構成,可將電化學能直接轉化成電能。相較於傳統電力有高電能轉換效率,長時間操作與產生廢熱再利用電力共生等優勢。在眾多類型中又以具有低溫操作能力及高能量密度的直接甲醇燃料電池最有微型化的潛力與商機,供可攜式用品市場使用。
現行直接甲醇燃料電池進料模式大部分為小型蠕動馬達推動液體,流經高純度石墨製流道板後進入陽極發生反應,因此產生許多問題;在材料端的問題有:1.高純度石墨板製作加工不易2.系統增重,石墨塊厚度達3cm以維持切割時材料強度,使單一電池重達2公斤不便攜帶。在系統端的問題有: 1.傳統蛇行流道板(水平進料方式)產生燃料被氣泡或是雜質阻塞,使電性表現下降。2.因流道蜿蜒有一定長度使前後段會產生濃度及溫度梯度,因此燃料在流道各處反應環境不同,導致反應不均勻。
本研究希望發展出新型直接甲醇燃料電池陽極端進料模式,以整合壓電材料產生超音波震盪來達成垂直進料解決以上問題。1.超音波震盪垂直進料可避免因水平進料而產生的阻塞情形。2.垂直進料不需通過蜿蜒流道讓燃料接觸觸媒反應。不因流道長而有溫度、濃度梯度問題。3.噴霧進料可達到DOD(droplet on demand)效果有效的進料及廢物移除。可望有較高的單位時間反應及放電效率。
先以巨觀噴霧測試電池組放電可能性,接著檢測燃料受超音波震盪後是否產生影響。然後製作各微小化部件:1.噴霧震盪片作動參數能耗分析。2.微噴孔片設計並製作改良。3.噴孔片表面處理與液珠噴射現象分析。4.各式攝影(巨觀DV、顯微鏡、高速攝影機)分析液珠噴射狀況,最後以電路控制方式導入週期性進料概念,經各部件微小化並整合成全系統後,可提供直接甲醇燃料電池高效率及高便利性的進料方式。

Abstract
Fuel cell is a power generating device composed by anode, cathode and electrolyte. It can directly change electro-chemical energy into electricity. Compared to traditional power generating devices, it has many advantages such as high transformation efficiency, longer time duration and waste heat recycle ability. Since direct methanol fuel cell has low temperature operation ability and high energy density. Among all kinds of fuel cells it has most potential to be miniaturization for portable device usage.
Nowadays the major fuel refilling mode for direct methanol fuel cell(DMFC) is using syringe pump to push liquid through high purity carbon flow channel plate into anode for electro-chemical reaction. This method produces many problems. For material’s aspect: 1. Manufacture difficulty for high purity carbon flow channel plate. 2. The carbon plate must be in 3cm width to maintain material strength in cutting, which causes single cell weighing 2 kg and limits its portable application. For system’s aspect: 1.Fuel will be blocked by bubbles or impurities in traditional flow channel. This phenomenon causes electrical performance degradation. 2. Serpentine flow channel resulting concentration and temperature level between the start and end of it. This condition causes different reaction surroundings and inconsistent reaction in the channel.
We hope to develop new type direct methanol fuel cell anode fuel supplement system in this research. Solving all the mentioned problems by integrating piezo-electrical material produces ultrasonic vibration to accomplish vertical fuel supplement. 1. Vertical fuel supplement can avoid fuel congestion caused by parallel supplement. 2. Without flow channel avoiding temperature and concentration gradient. 3. Mist jetting supplement have droplet on demand effect can refill fuel and move junks efficiently. Thus, we can have quicker reaction time and higher electrical transforming efficiency. 4. No more complicated system and massive equipment for a single fuel cell.
First, we integrate macro mist jetting supplement method with fuel cell system and test functional probability, than checking whether ultrasonic vibration will cause fuel transformation or not. The experiment procedure in micro device fabrication as follows. 1. Piezo-electrical actuating condition analysis.2.Micro nozzle plate design and innovate. 3. Nozzle plate surface treatment and droplet jetting condition analysis. 4. Droplet jetting condition analysis by Digital Camera, Microscope and high-speed recorder, then via integrated with electro-controlling system realize periodic fuel supply concept. After all part fabrication and integration into whole system. Higher efficiency and much convenient fuel supplement model in direct methanol fuel cell could be established.

目錄
摘要………………………………………………………………… Ⅰ
致謝 ………………………………………………………………… Ⅳ
目錄 ……………………………………………………………………… Ⅴ
圖目錄 ……………………………………………………………………… Ⅶ
表目錄 ……………………………………………………………………… ⅩⅡ
第一章 序論 ………………………………………………………………………… 1
1.1 前言 ……………………………………………………………………1
1.2 研究動機 ……………………………………………………………………………3
1.3研究目標 ……………………………………………………………………………4
第二章 文獻回顧 ……………………………………………………………………………6
2.1 導論 …………………………………………………………………………6
2.2 直接甲醇燃料電池(DMFC)於進料端的挑戰 ……………………………………6
2.3 非傳統進料模式相關研究 …………………………………………………………7
2.4 燃料混合液於蒸散及震盪脫離時所產生的分離現象…………………………12
2.5 液滴產生裝置類別及比較 ……………………………………………………… 12
2.6 壓電材料相關工作原理及於噴霧作動上的應用 ……………………………… 15
2.7 燃料電池在高濃度甲醇進料下的挑戰 ………………………………………… 31
第三章 實驗架構與方法 ………………………………………………………………… 35
3.1 巨觀噴霧測試暨放電測試 ……………………………………………………… 36
3.2 巨觀噴霧燃料分離現象測試 …………………………………………………… 37
3.3 週期性進料巨觀實驗設置 ……………………………………………………… 38
3.4 微小化設計及部件製程 ………………………………………………………… 41
3.5 測試及觀測設備…………………………………………………………………… 53
第四章 結果與討論………………………………………………………………………… 57
4.1巨觀燃料電池甲醇噴霧放電實驗………………………………………………… 57
4.2 超音波震盪下燃料分離現象實驗………………………………………………… 61
4.3 巨觀週期性進料實驗結果………………………………………………………… 64
4.4 膠黏封裝測試結果………………………………………………………………… 66
4.5 微噴孔片製作成果………………………………………………………………… 67
4.6 表面處理實驗結果………………………………………………………………… 70
4.7 攝影觀測現象暨能量分析………………………………………………………… 73 4.8 全電池放電測試…………………………………………………………………… 86
第五章 結論………………………………………………………………………………… 91
第六章 未來工作…………………………………………………………………………… 92第七章 參考文獻…………………………………………………………………………… 93





圖目錄
圖1-1 直接甲醇燃料電池工作原理示意圖 ……………………………………………… 2
圖1-2 直接甲醇燃料電池與鋰電池供電效益比較圖 …………………………………… 3
圖2-1 蛇行流道板示意圖 ………………………………………………………………… 7
圖2-2 垂直式進料電池組設置 …………………………………………………………… 8
圖2-3 高濃度下電池效能圖 ……………………………………………………………… 8
圖2-4 加熱式霧化進料架構 ……………………………………………………………… 9
圖2-5 直接甲醇燃料電池電化學效率圖(a)液態進料(b)氣相進料 …………………… 9
圖2-6 直接甲醇燃料寄生電流密度比較圖(a)液態進料(b)氣相進料 …………………10
圖2-7 甲醇蒸氣於陽極擴散行為 …………………………………………………………11
圖2-8 蒸氣進料能量效率 …………………………………………………………………11
圖2-9 乙醇水溶液在不同溫度下震盪分離濃度圖 ………………………………………12
圖2-10 熱汽泡式噴霧制動原理 ………………………………………………………… 14
圖2-11 聲波能量與液面激起高度及液珠尺寸關係圖 ………………………………… 17
圖2-12 定頻率改變突波寬度與液珠直徑大小關係圖 ………………………………… 17
圖2-13 正壓電效應示意圖 ……………………………………………………………… 18
圖2-14 逆壓電效應示意圖 ……………………………………………………………… 19
圖2-15 液面震盪攝影圖…………………………………………………………………… 23
圖2-16 彎曲型壓電致動示意圖 ………………………………………………………… 23
圖2-17 推擠型壓電致動示意圖 ………………………………………………………… 24
圖2-18 剪力型壓電致動示意圖 ………………………………………………………… 24
圖2-19 收縮管型壓電致動示意圖 ……………………………………………………… 24
圖2-20 壓電整合微型噴孔系統示意圖 ………………………………………………… 25
圖2-21 分區供料示意圖 ………………………………………………………………… 26
圖2-22 噴霧進料產氫示意圖 …………………………………………………………… 26
圖2-23 高黏滯性液體攝影圖 …………………………………………………………… 27
圖2-24 ZnO震盪元件成品圖 …………………………………………………………… 28
圖2-25 液珠震盪模擬圖 ………………………………………………………………… 28
圖2-26 多層傅立葉式結構噴孔圖 ……………………………………………………… 30
圖2-27 單邊黏附式壓電致動器圖 ……………………………………………………… 30
圖2-28 直接甲醇燃料電池液態進料濃度與溫度關係圖………………………………… 33
圖2-29 直接甲醇燃料電池液態進料不同濃度與效率關係圖…………………………… 33
圖2-30 OH-及CO在不同Pt-Ru位置上鍵結能比較圖 …………………………………… 34
圖2-31 電流強度與CO及OH-濃度關係圖 ……………………………………………… 34
圖2-32 直接甲醇燃料電池陽極端有無吸水層電化學效率比較圖……………………… 34
圖3-1 巨觀噴霧實驗噴霧器圖 ……………………………………………………………36
圖 3-2 巨觀全電池組測試示意圖 ……………………………………………………… 36
圖3-3 巨觀全電池測試圖 …………………………………………………………………37
圖3-4 噴霧收集嚐試 ………………………………………………………………………38
圖3-5 週期性進料設置示意圖 ………………………………………………………… 39
圖3-6 扇葉設計示意圖 ………………………………………………………………… 40
圖3-7 巨觀噴霧測試實際圖 …………………………………………………………… 40
圖3-8實驗架構目標圖 …………………………………………………………………… 41
圖3-9 壓電材料圖 ……………………………………………………………………… 42
圖3-10 膠黏劑測試示意圖 ………………………………………………………………43
圖3-11 點膠機及相關設備圖 ……………………………………………………………43
圖3-12 第一代製程光罩圖 ………………………………………………………………44
圖3-13 第一代微噴孔片製作流程圖 …………………………………………………… 45
圖3-14 第二代噴孔片設計光罩圖 ……………………………………………………… 46
圖3-15 第二代噴孔片設計製程圖 ……………………………………………………… 47
圖3-16 第二代噴孔片直進式微孔洞製作圖 …………………………………………… 48
圖3-17 一體成形製程光罩圖(a)對準記號(b)背後燃料槽(c)正面噴孔區域 …………49
圖3-18 一體成形設計製作流程圖 ……………………………………………………… 49
圖3-19 表面處理試片設計參數圖 ……………………………………………………… 51
圖3-20 FOTS氣相沉積實際圖及示意圖 ……………………………………………… 52
圖3-21 表面改質運用藥品結構圖 ……………………………………………………… 53
圖3-22 顯微鏡搭配CCD設置 ……………………………………………………………54
圖3-23 高速攝影機系統設置 …………………………………………………………… 54
圖3-24 微噴霧全電池測試示意圖 ……………………………………………………… 55
圖3-25 微噴霧全電池測試實際圖 ……………………………………………………… 55
圖3-26全電池組細部放大圖(a)示意圖(b)實際圖(c)作動端實際圖 ………………… 56
圖4-1巨觀噴霧最初步測試IV曲線 …………………………………………………… 57
圖4-2通氧測試電化學圖形 ……………………………………………………………… 59
圖4-3 高濃度噴霧測試效率峰值與濃度關係圖………………………………………… 60
圖4-4 高濃度噴霧測試平均效率與濃度關係圖………………………………………… 60
圖4-5 高濃度噴霧測試效率峰值衰減率與濃度關係圖………………………………… 60
圖4-6 巨觀噴霧蒸散選擇性實驗濃度圖………………………………………………… 61
圖4-7短期濃度變化圖及噴霧量折線圖 ………………………………………………… 63
圖4-8未來預期進料結構示意圖………………………………………………………… 64
圖4-9單一噴槍測試結果……………………………………………………………………65
圖4-10單一噴槍測試陽極端積水狀況 ………………………………………………… 65
圖4-11週期性進料實驗電化學測試圖(I)…………………………………………………66
圖4-12週期性進料實驗電化學測試圖(II) ………………………………………………66
圖4-13 膠黏厚度SEM圖10μm及17μm……………………………………………………67
圖4-14膠黏成品圖………………………………………………………………………… 67
圖4-15第一代微噴孔陣列SEM圖………………………………………………………… 67
圖4-16第二代製程錐型孔洞三維結構SEM圖……………………………………………69
圖4-17 第二代製程錐型孔洞三維結構SEM圖(II)……………………………………… 70
圖4-18 表面性質接觸角圖 ……………………………………………………………… 71
圖4-19 表面性質與水噴出現象示意圖 ………………………………………………… 72
圖4-20 巨觀攝影觀測照片 ……………………………………………………………… 72
圖4-21 不同型貌噴孔片作動巨觀影像 ………………………………………………… 74
圖4-22 液珠噴射現象放大攝影圖 ……………………………………………………… 76
圖4-23 液珠表面現象圖 ………………………………………………………………… 77
圖4-24 高頻振盪下試片現象 …………………………………………………………… 79
圖4-25 Si/ FOTS (19°/103°) 10000張/秒 液珠噴發高速攝影影像(512×256) ……… 80圖4-26 FOTS/SiO2(103°/10.64°) 10000張/秒 液珠下降高速攝影影像(512×256)… 81圖4-27 FOTS/FOTS(103°/103°) 30000張/秒 液珠下降高速攝影影像(256×128)…… 81圖4-28 Si/Si3N4(19°/17°) 30000張/秒 液珠下降高速攝影影像(512×256)…………… 81圖4-29 FOTS/FOTS(103°/103°) 30000張/秒 液珠上升高速攝影影像(256×128)…… 81圖4-30 畫素分析比較圖…………………………………………………………………… 82圖4-31 不同表面處理作動乙醇粒徑分布圖……………………………………………… 82圖4-32 雙面親水試片高速攝影噴霧現象於30000fps…………………………………… 83圖4-33 雙面親水試片作動不同液體粒徑大小分布圖…………………………………… 83圖4-34 phase average拍攝方式影像圖 ………………………………………………… 84圖4-35 低於燃料槽液面穩定高度噴霧現象(突發性液柱) ………………………………85圖4-36 微噴霧進料全電池電化學掃描圖………………………………………………… 86圖4-37 微噴霧進料與巨觀噴槍進料電化學效率比較圖………………………………… 87圖4-38 週期性進料電化學圖形…………………………………………………………… 88圖4-39 週期性進料電化學整理數據……………………………………………………… 88圖4-40 未來實驗架構……………………………………………………………………… 90圖4-41 陰極端積水現象…………………………………………………………………… 90



表目錄
表 2-1 加熱式及靜置式霧化進料比較…………………………………………………… 11
表 3-1 市售替換壓電零件規格表………………………………………………………… 42
表 4-1 各表面性質接觸角數據 ………………………………………………………… 71
表 4-2 各波形相對頻率耗用能量現象表 ……………………………………………… 75
表 4-3 DI water與乙醇驅動能量表 ………………………………………………………77
表 4-4 無噴孔片下DI water各波形驅動電壓及能量 ………………………………… 78
表 4-5 各式表面處理噴孔片乙醇噴霧驅動電壓及能量 ……………………………… 78
表 4-6 噴孔形貌對液體驅動電壓影響 ………………………………………………… 78

第七章 參考文獻
[1] Xiaoming Ren , Piotr Zelenay, Sharon Thomas, John Davey, Shimshon Gottesfeld, “Recent advances in direct methanol fuel cells at Los Alamos National Laboratory”
Journal of Power Sources,Vol.86, P.111–116, 2000.
[2] B.D. McNicol, D.A.J. Rand, K.R. Williams, “Fuel cells for road transportation purposes — yes or no?” Journal of Power Sources,Vol.100, P.47–59, 2001.
[3] G. Cacciola, V. Antonucci, S. Freni, “Technology up date and new strategies on fuel cells.” Journal of Power Sources,Vol.100, P.67–79, 2001.
[4] T.S. Zhao, W.W. Yang, R. Chen, Q.X. Wu”Towards operating direct methanol fuel cells with highly concentrated fuel” Journal of Power Sources Vol.195 P.3451–3462 (2010)
[5] A.A. Kulikovsky, “Model of the flow with bubbles in the anode channel and
performance of a direct methanol fuel cell.” Electrochemistry Communications,Vol.7, P.237-243, 2005.
[6] C. W. Wong, T. S. Zhao, Z.Q. Ye, and J. G. Liu, “Transient Capillary Blocking in the Flow Field of a Micro-DMFC and Its Effect on Cell Performance.” Journal of The Electrochemical Society,Vol. 152 _8, A1600-A1605, 2005.
[7] H. Yang, T.S. Zhao, Q. Ye, “Pressure drop behavior in the anode flow field of
liquid feed direct methanol fuel cells.” Journal of Power Sources, Vol. 142 , P.117-124, 2005.
[8] H. Yang, T.S. Zhao, Q. Ye “In situ visualization study of CO2 gas bubble behavior
in DMFC anode flow fields” Journal of Power Sources Vol.139 P.79–90 (2005)
[9] Marc T. M. Koper, Tatyana E. Shubina, and Rutger A. van Santen “Periodic Density Functional Study of CO and OH Adsorption on Pt-Ru Alloy Surfaces: Implications for CO Tolerant Fuel Cell Catalysts” J. Phys. Chem. B, Vol. 106 , P. 686-692, 2002.
[10] Christina Roth, Nathalie Benker, Thorsten Buhrmester, Marian Mazurek, Matthias
Loster, Hartmut Fuess, Diederik C. Koningsberger, and David E. Ramaker “Determination of O[H] and CO Coverage and Adsorption Sites on PtRu Electrodes in an Operating PEM Fuel Cell” J.A.C.S. , 10/04/2005
[11] A.K. Shukla, P.A. Christenson, A.Hamnett, M.P. Hogarth “A vapour-feed direct-methanol fuel cell with proton-exchange membrane electrolyte” Journal of Power Sources, Vol. 55 , P.87-91, 1995.
[12] Martin Hogarth, Paul Christenson, Andrew Hamnett, Ashok Shukla “The design and construction of high-performance direct methanol fuel cells. 2. Vapour-feed systems. ” Journal of Power Sources, Vol. 69 , P.125-136, 1997.
[13] R. Chen, T.S. Zhao, J.G. Liu “Effect of cell orientation on the performance of passive
direct methanol fuel cells.” Journal of Power Sources, Vol. 157, P.351-357, 2006.
[14]Ikwhang Chang, Seungbum Ha, Sunghan Kim, Sangkyun Kang, Jinho Kim,
Kyounghwan Choi, SukWon Cha ”Operational condition analysis for vapor-fed direct
methanol fuel cells” Journal of Power Sources Vol.188 P.205–212 ,2009
[15] Josef Kallo, Jim Kamara, Werner Lehnert , Rittmar von Helmolt “Cell voltage transients of a gas-fed direct methanol fuel cell.” Journal of Power Sources, Vol. 127, P.181-186, 2004.
[16] Gregory Jewett, Zhen Guo, Amir Faghri “Performance characteristics of a vapor feed passive miniature direct methanol fuel cell.” International Journal of Heat and Mass Transfer, Vol. 52, P.4573-4583, 2009.
[17] Zhen Guo, Amir Faghri “Vapor feed direct methanol fuel cells with passive
thermal-fluids management system.” Journal of Power Sources, Vol. 167, P.378-390, 2007.
[18] Q X Wu, T S Zhao, W W Yang and R Chen “ A flow field enabling operating direct methanol fuel cells with highly concentrated methanol” international journal of
hydrogen energy Vol.36 P.830~838 ,2011
[19] Xianshe Feng , Robert Y. M. Huang “Liquid Separation by Membrane Pervaporation: A Review.” Ind. Eng. Chem. Res, Vol.36, P. 1048-1066. 1997
[20] HaeKyoung Kim “Passive direct methanol fuel cells fed with methanol vapor.” Journal of Power Sources, Vol.162, P. 1232-1235. 2006
[21] Jeremy Rice, Amir Faghri “Analysis of a passive vapor feed direct methanol fuel cell.” International Journal of Heat and Mass Transfer, Vol.51, P. 948-959. 2008
[22] Chao Xu, Amir Faghri, and Xianglin Li “Development of a High Performance Passive Vapor-Feed DMFC Fed with Neat Methanol.” Journal of The Electrochemical Society, Vol.157, P. B1109-B1117. 2010
[23] Chao Xu, Amir Faghri “Mass transport analysis of a passive vapor-feed direct methanol fuel cell.” Journal of Power Sources, Vol.195, P. 7011-7024. 2010
[24] Bin Xiao, Amir Faghri “Numerical analysis for a vapor feed miniature direct methanol fuel cell system.” International Journal of Heat and Mass Transfer, Vol. 52, P. 3525-3533. 2009
[25] Zhen Guo, Amir Faghri “Vapor feed direct methanol fuel cells with passive
thermal-fluids management system.” Journal of Power Sources, Vol. 167, P. 378-390. 2007
[26] Masanori Sato, Kazuo Matsuura, Toshitaka Fujii “Ethanol separation from ethanol-water solution by ultrasonic atomization and its proposed mechanism based on parametric decay instability of capillary wave.” JOURNAL OF CHEMICAL PHYSICS, Vol. 114, NUMBER 5, 2001
[27] D. M. Kirpalani and F. Toll “Revealing the physicochemical mechanism for ultrasonic separation of alcohol–water mixtures.” JOURNAL OF CHEMICAL PHYSICS, Vol. 117, NUMBER 8, 2002
[28] Hitomi Kobara, Makiko Tamiya, Akihiro Wakisaka, Tetsuo Fukazu and Kazuo Matsuura “Relationship Between the Size of Mist Droplets and Ethanol Condensation Efficiency at Ultrasonic Atomization on Ethanol–Water Mixtures.” AIChE, Vol. 56, P.810-814, 2010
[29] H.C. Lee “Droplet Formation in a liquid Jet.” IBM J. Res Develop, PP364-369 1994
[30] E.K. Dabora “Production of Mono-disperse Sprays.” http: rsi, aip/rsi/copyright.jsp ,Vol 38, Number 4, 1967
[31] W.T. Pimbley “Droplet Formation from a Liquid Jet: Alinear One-Dimensional Analysis Considered as a Boundary Value Problem.” IBM J. Res Develop, PP148-156 March 1976
[32] Shield, T. W., Bogy, D. B. and Talke, F. E., “Drop Formation by DOD Ink-Jet Nozzles: A Comparison of Experiment and Numerical Simulation,” IBM J. Res Develop, Vol. 31, No. 1, p. 96-110,1987.
[33] S.A. Elrod, B.Hadimioglu, B.T Khuri-Takub, E.G. Rawson, E. Richley, C.F. Quate, N.N. Mansour, T.S. Lundgren “Nozzleless droplet formation with foused acoustic beams.” J. Appl. Phys. 65(9) 1 May 1989
[34] G.Brenn, T. Helpio and F.Dirst “A new apparatus for the production of Mono-disperse sprays at high flow rates.” Chemical Engineering Science Vol.52 No2 pp237~244 1997
[35] J. M. Meacham, C. Ejimofor, S. Kumar, F. L. Degertekin,and A. G. Fedorov “Micromachined ultrasonic droplet generator based on a liquid horn structure.” REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 75, NUMBER 5 2004
[36] J. M. Meacham, M. J. Varady, F. L. Degertekin, and A. G. Fedorov “Droplet formation and ejection from a micromachined ultrasonic droplet generator: Visualization and scaling.” PHYSICS OF FLUIDS 17 100605 _2005
[37] Thomas P. Forbes, F. Levent Degertekin, and Andrei G. Fedorov “Multiplexed operation of a micromachined ultrasonic droplet ejector array.” REVIEW OF SCIENTIFIC INSTRUMENTS 78, 104101 _2007
[38] M J Varady, L McLeod, J M Meacham, F L Degertekin and A G Fedorov “An integrated MEMS infrastructure for fuel processing: hydrogen generation and separation for portable power generation.” J. Micromech. Microeng. 17 S257–S264 (2007)
[39] Vladimir G. Zarnitsyn , J. Mark Meacham ,Mark J. Varady , Chunhai Hao , F. Levent Degertekin , Andrei G. Fedorov “Electrosonic ejector microarray for drug and gene delivery.” Biomed Microdevices 10:299–308 (2008)
[40] J. Mark Meacham , Amanda O’Rourke, Yong Yang, Andrei G. Fedorov, F. Levent Degertekin, David W. Rosen “Micromachined Ultrasonic Print-Head for Deposition of
High-Viscosity Materials.” Journal of Manufacturing Science and Engineering 030905-1, Vol. 132,JUNE 2010
[41] Go‥khan Perc﹐in Laurent Levin, and Butrus T. Khuri-Yakub “Piezoelectrically actuated droplet ejector.” Rev. Sci. Instrum 68 .12, December 1997
[42] Go‥khan Perc﹐Butrus T. Khuri-Yakub “Piezoelectrically Actuated Flextensional
Micromachined Ultrasound Droplet Ejectors.” IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 49, NO. 6, .JUNE 2002
[43] Go‥khan Perc﹐Butrus T. Khuri-Yakub “Piezoelectrically actuated flextensional micromachined ultrasound transducers.” Ultrasonics Vol.40 P.441–448 (2002)
[44] Yeau-Ren Jeng , Chien-Chan Su , Guo-Hua Feng, Yu-Yin Peng , Ghin-Pin Chien “A PZT-driven atomizer based on a vibrating flexible membrane and a micro-machined trumpet-shaped nozzle array.” Microsyst Technol Vol.15,P.865–873 (2009)
[45] S.C. Chen, C.H. Cheng, Y.C. Lin “Analysis and experiment of a novel actuating design with a shear mode PZT actuator for microfluidic application.” Sensors and Actuators A
Vol. 135 P.1–9 (2007)
[46] Bart Beulen, Jos de Jong, Hans Reinten, Marc van den Berg, Herman Wijshoff , Rini van Dongen “Flows on the nozzle plate of an inkjet printhead.” Exp Fluids Vol42, P.217–224, (2007)
[47] Chen S. Tsai, Rong W. Mao, Shih K. Lin, Ning Wang and Shirley C. Tsai “Miniaturized multiple Fourier-horn ultrasonic droplet generators for biomedical applications.” Lab on a chip Vol.10,P 2733–2740, 2010.
[48] Yong-Jae Kim, Jaeyong Choi, Sang Uk Son, Sukhan Lee, Xuan Hung Nguyen,Vu Dat Nguyen, Doyoung Byun, and Han Seo Ko “Comparative Study on Ejection Phenomena of Droplets from Electro-Hydrodynamic Jet by Hydrophobic and Hydrophilic Coatings of Nozzles.” Japanese Journal of Applied Physics Vol. 49 , 060217 (2010)
[49] Jr-Ming Lai, Chang-Yan Huang, Chih-Hao Chen, Kung Linliu and Jenn-Der Lin “Influence of liquid hydrophobicity and nozzle passage curvature on microfluidic
dynamics in a drop ejection process.” J. Micromech. Microeng Vol. 20, 015033 (2010)
[50] K. SCOTT, W. TAAMA, J. CRUICKSHANK “Performance of a direct methanol fuel cell.” JOURNAL OF APPLIED ELECTROCHEMISTRY Vol. 28, 289-297 (1998)
[51] Satoru Hikita, Kimitaka Yamane, Yasuo Nakajima “Measurement of methanol crossover in direct methanol fuel cell.” JSAE Review Vol.22, 151-156 (2001)
[52] Josef Kallo, Wernes Lehnert, and Rittmar von Helmolt “Conductance and Methanol Crossover Investigation of Nafion Membranes in a Vapor-Fed DMFC.” Journal of The Electrochemical Society Vol. 150 (6) P.A765-A769 (2003)
[53]J.G. Liu, T.S. Zhao , R. Chen, C.W. Wong “The effect of methanol concentration
on the performance of a passive DMFC” Electrochemistry Communications Vol.7 P.288–294 (2005)
[54] Steffen Eccarius , Falko Krause, Kevin Beard, Carsten Agert “Passively operated vapor-fed direct methanol fuel cells for portable applications.” Journal of Power Sources Vol.182 P.565–579 (2008)
[55] Debra R. Rolison, Patrick L. Hagans, Karen E. Swider, and Jeffrey W. Long “Role of Hydrous Ruthenium Oxide in Pt-Ru Direct Methanol Fuel Cell Anode Electrocatalysts:
The Importance of Mixed Electron/Proton Conductivity.” Langmuir Vol.15 ,P. 774-779, 1999
[56] F. Maillard, G.-Q. Lu, A. Wieckowski, and U. Stimming. “Ru-Decorated Pt Surfaces as
Model Fuel Cell Electrocatalysts for CO Electrooxidation” J. Phys. Chem. B Vol.109,
P.16230-16243( 2005)
[57] Q.X. Wu, T.S. Zhao, R. Chen, W.W. Yang “Enhancement of water retention in the
membrane electrode assembly for direct methanol fuel cells operating with neat
methanol” international journal of hydrogen energy Vol.35 P.10547~10555 (2010)
[58]曾俊欽,推拉式壓電噴嘴製作及噴霧特性,國立成功大學航空太空工程學系碩士論文,2007
[59]蘇建展,壓電式微噴霧器製作及性能模擬分析,國立中正大學機械工程所博士文,2007

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top