跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 15:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊宏
研究生(外文):Chen, Chun-Hung
論文名稱:Doppler Scaling Factor Estimation for Underwater Acoustic OFDM Systems
論文名稱(外文):正交分頻多工水下音響系統之都卜勒縮放因子估計技術
指導教授:蔡育仁蔡育仁引用關係
指導教授(外文):Tsai, Yuh-Ren
口試委員:溫志宏黃政吉
口試日期:2011-7-28
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:38
中文關鍵詞:水下環境都卜勒估測
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
由於載波頻率和訊號頻寬兩者的大小比例很接近,因此水下音響通道它是一個寬帶的系統,進而引起了與頻率相關的都卜勒偏移。由此產生的都卜勒效應,造成每個子載波都會有頻率上的偏移,且不同的子載波偏移的量也不同,偏移的大小主要是決定於子載波本身的頻率。由於在水下所使用的載波頻率非常的小,因此就無法假設所有的子載波由於都卜勒效應所引起的頻率偏移量近似為一個常數,也就是說傳統在無線窄帶通信通道的都卜勒頻率偏移的估計技術是無法應用到水下音響的環境的。在這篇論文中,我們將此都卜勒的效應處理成水下音響環境在所有的傳播路徑裡都有一個相同的都卜勒縮放因子,並提出一個由前序引導封包輔助的都卜勒縮放因子估計方法,所使用的是補零前述碼正交分頻多工系統。這個都卜勒縮放因子估計方法的基礎概念是利用在接收端收到的兩個連續且相同的前序引導封包在一樣的子載波指標去計算出兩者之間的相位差,再利用此相位差去協助我們估計出都卜勒縮放因子。在我們的模擬中將我們所提出的方法與匹配濾波器法和多個相關器法做比較,比較的基準是使用均方誤差,從模擬結果可以得知,我們所提出的方法是明顯優於另外兩個方法的。
Underwater acoustic (UWA) channels are wideband in nature due to the small ratio of the carrier frequency to the signal bandwidth, and introduce frequency-dependent Doppler shift. The resulting Doppler effect translates each frequency component by a different Doppler amount. Therefore, the conventional techniques for Doppler shift estimation in wireless narrowband communication channels cannot be applied to the UWA environments. In this thesis, we consider a UWA environment having a common Doppler scaling factor on all propagation paths and propose a preamble-assisted Doppler scaling factor estimation scheme for ZP-OFDM (zero padding orthogonal frequency division multiplexing) systems. The Doppler scaling factor is estimated based on the phase difference of the received signals on the same subcarrier in two consecutive OFDM preambles. In the simulations, we show that the proposed scheme outperforms the matched-filter and multiple correlator methods in terms of mean square error (MSE).
Abstract I
Contents II
Figures and Tables III
Chapter 1 1
Introduction 1
Chapter 2 4
Background Knowledge 4
2.1 Underwater Acoustic Channels 4
2.2 System Model 8
2.3 Matched-filter Method 12
2.4 Multiple Correlator Method 16
Chapter 3 18
Preamble-assisted Doppler Scaling Factor Estimation Scheme 18
3.1 The Proposed Scheme 20
3.2 Correction for Phase Wrapping 23
Chapter 4 27
Simulation Results 27
4.1 Simulation Parameter 27
4.2 MSE Performance of the Proposed Doppler Scaling Factor Scheme 28
4.3 Comparison between the Proposed Doppler Scaling Factor Scheme and the Matched-filter Method 30
4.4 Comparison between the Proposed Doppler Scaling Factor Scheme and the Multiple Correlator Method 32
Chapter 5 35
Conclusion 35
References 37


[1] P. C. Carrascosa and M. Stojanovic, “Adaptive Channel Estimation and Data Detection for Underwater Acoustic MIMO–OFDM Systems,” IEEE J. Ocean. Eng., vol. 35, no. 3, pp. 635-646, July 2010
[2] G. Leus and P. A. van Walree, “Multiband OFDM for covert acoustic communications,” IEEE J. Sel. Areas Commun., vol. 26, no. 9, pp.1662–1673, December 2008.
[3] S. Yerramalli and U. Mitra, “Optimal Resampling of OFDM Signals for Multiscale–Multilag Underwater Acoustic Channels,” IEEE J. Ocean. Eng., vol. 36, no. 1, January 2011
[4] A. Y. Kibangou, L. Ros and C. Siclet, “Doppler Estimation and Data detection for Underwater Acoustic ZF-OFDM Receiver,” Wireless Communication Systems (ISWCS), pp. 591 – 595, September 19-22, 2010.
[5] B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts,” IEEE J. Ocean. Eng., vol. 33, no. 2, pp. 198–209, April 2008.
[6] C. Zhang, K. Wang, Y. Wang, Y. Xu, and J. Yang, “Sampling Frequency Offset Estimation for MIMO OFDM Systems,” IEEE WiCom. Conf., pp. 1-4, Dalian, October 12-14, 2008.
[7] K.-B. Png, X. Peng, and H. F. T. Chin, “Two-Dimensional Iterative Sampling Frequency Offset Estimation for MB-OFDM System,” IEEE Veh. Tech. Conf., VTC‘06-Spring, vol. 3, pp. 1344–1348, Melbourne, Australia, May 7–10, 2006.
[8] M. Stojanovic, “Low complexity OFDM detector for underwater acoustic channels,” MTS/IEEE OCEANS Conf., Boston, MA, September 18-21, 2006.
[9] B.-C. Kim and I.-T. Lu, “Parameter study of underwater communications system,” MTS/IEEE OCEANS Conf., Providence, Rhode Island, September 11-14, 2000.
[10] B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willet, “Multicarrier underwater acoustic communications over fast-varying channels,” IEEE J. Ocean. Eng., vol. 33, no. 2, pp. 198–209, April 2008.
[11] Bayan S. Sharif, Jeff Neasham, Oliver R. Hinton, and Alan E. Adams, “A Computationally Efficient Doppler Compensation System for Underwater Acoustic Communications,” IEEE J. Ocean. Eng., vol. 25, no. 1, pp.52-61, January 2000.
[12] B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, and P. Duhamel, “Cyclic Prefixing or Zero Padding for Wireless Multicarrier Transmissions,” IEEE Trans. Comm., vol. 50, no. 12, pp. 2136–2148, December 2002.
[13] M. Speth, S. A. Fechtel, G. Fock, H. Meyr, “Optimum Receiver Design for OFDM-Based Broadband Transmission—Part II: A Case Study,” IEEE Trans. Comm., vol. 49, no. 4, pp. 571-578, April 2001.
[14] M. Stojanovic and J. Presig, “Underwater acoustic communication channels: Propagation models and statistical characterization,” IEEE Communications Magazine, vol. 47, pp. 84-89, January 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top