跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 02:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昶孝
研究生(外文):Chen, Chang-Hsiao
論文名稱:新穎微型電極陣列應用於神經信號紀錄之研究
論文名稱(外文):A Novel Microelectrode Array for Recording Neural Signal
指導教授:饒達仁
指導教授(外文):Yao, Da-Jeng
學位類別:博士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:118
中文關鍵詞:微電極神經細胞水電漿奈米碳管石墨烯探針
相關次數:
  • 被引用被引用:0
  • 點閱點閱:986
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:1
人類的判斷、思考、行動等重要的生命現象是由神經系統執行,神經訊號若失調對人體往往造成重大的傷害。常見因神經系統失調所造成之神經疾病有巴金森氏症、阿爾茲海瑪氏症,癲癇等…。植入式微電極除了提供與神經系統溝通的界面外,更可獲得細胞層級解析度的生理資訊,這是目前非侵入式量測法無法達到的。近年來更發展出陣列化式的微電極,在群集神經細胞中同時多點採樣信號,提供更深入溝通資訊,如運動控制,記憶的形成和知覺。目前微電極陣列大多採MEMS相關技術製於各種基材上,包括矽材料與近期常使用的高分子材料。
在此論文中我們提出四個主要研究計畫,如下: 第一個計畫是利用絕緣層覆矽晶圓(SOI Wafer)製作具備十六通道電極陣列的微探針,可同時應用於神經反應量測並計算出龍蝦神經傳導速率。
第二個計畫方面,我們成長多璧奈米碳管(MWCNT)在微電極陣列上,來增加電極的有效反應面積,提高量測神經訊號的訊雜比。此外,利用電漿處理奈米碳管表面的潤濕性,特別是水蒸氣電漿處裡法能將超級疏水態的奈米碳管轉換成超級親水態,進而提升反應面積並增加電化學與量測生物訊號品質。
第三個計畫方面,我們提出利用三微軟式的探針來記錄神經訊號,由於活體生物的呼吸或移動,容易造成組織與探針間滑移進而發炎,軟式探針運用於長時間活體可以降低發炎。此計畫更利用靜電力致使平面探針可以自我組裝成三維探針,其優點是具備匹量化、製程簡易和高生醫相容性。此外,三維軟式微探針的材料並選用高分子材料SU-8和Parylene。
最後,我們提出一創新的神經界面-石墨烯,整合於SU-8軟性探針。石墨烯是一種單層原子的六角碳環,延伸出的二維平面蜂窩狀結構。它具優異的機械、生物相容性和獨特的電學特性,其優點適合應用於神經科學領域中。未來期望透過相關研究,了解神經細胞網路內的傳遞模式與變化,並應用於臨床上檢測。
誌謝 iv
摘要 vi
Abstract viii
Contents xi
List of Illustrations xiii
List of Tables xix
1. Introduction 1
2. Literature Review 5
2.1 Conventional Electrode 5
2.2 Carbon Nanotubes based Microelectrode 6
2.3 Three-dimensional Flexible Microprobe Assembly 8
2.4 Graphene-based Microelectrode 10
2.5 Summary of Microelectrode 11
3. Experimental Procedure and Instruments 15
3.1 Experimental Procedure 15
3.2 Experimental Instruments 16
3.2.1 Scanning Electron Microscope (SEM) 16
3.2.2 Micro-Raman Spectroscopy (μ-Raman) 17
3.2.3 X-ray Photoelectron Spectroscopy (XPS) 18
3.2.4 Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) 19
3.2.5 Contact Angle System 20
3.2.6 Cortical Cell Culture 21
3.2.7 Neuronal Signal Detection 22
4. Micro-multi-probe Electrode Array to Measure Neural Signals 25
4.1 Design of MEA 26
4.2 Fabrication of MEA 28
4.3 Probe Structure and Mechanical Strength 30
4.4 Electrochemical Property of Interface 32
4.5 Neural Signal Recording 34
4.5.1 Lateral Giant Nerve Fiber of Escape Circuit 34
4.5.2 Ganglion Neuron of Retina 41
4.6 Summary 43
5. Hydrophilic Modification of Neural Microelectrode Arrays Based on Multi-walled Carbon Nanotubes 45
5.1 MEMS Fabrication and CNTs Growth and Treatment 46
5.2 CNTs Surface Morphology 48
5.3 Raman Spectra 50
5.4 X-ray Photoelectron Spectroscopy Analyses 52
5.5 CNTs Surface Wettability 55
5.6 Cyclic Voltammetry and Electrochemical Impedance Spectroscopy 57
5.7 Recording Neural Signals 61
5.8 Summary 64
6. A Three-dimensional Flexible Microprobe Array for Neural Recording Assembled through Electrostatic Actuation 65
6.1 Design of 3D Flexible Microprobe 67
6.2 Fabrication of 3D Flexible Microprobe and Package 69
6.3 Probe Structure 73
6.4 Electrostatic Field and Capillarity Assembly 75
6.5 Mechanical Strength of 3D Flexible Microprobe 76
6.6 Electrochemical Impedance Spectra of Interface 78
6.7 Recording Neural Signals 79
6.8 Cytotoxicity Test 82
6.9 Summary 84
7. A Flexible Graphene-based Microelectrode for Neuronal Recording 87
7.1 Fabrication Process of Flexible Graphene-based Microelectrode 88
7.2 Probe Structure and Mechanical Strength 90
7.3 Electrochemical Properties of Graphene-based Microelectrode 92
7.4 Graphene Surface Wettability 95
7.5 Cortical Cell Culture 96
7.6 Neuronal Signal Detection 98
7.7 Summary 100
8. Conclusions 101
Bibliography 105
List of Publications 115
[1] M. A. B. Brazier, A History of Neurophysiology in the 19th Century. New York USA: Raven Press, 1988.
[2] A. L. Hodgkin and A. F. Huxley, "Action Potentials Recorded from inside a Nerve Fibre", Nature, Vol. 144, pp.710-711, 1939.
[3] Z. Aranyi, G. Szabo, B. Szepesi, A. Folyovich, "Proximal Conduction Abnormality of the Facial Nerve in Miller Fisher Syndrome: A Study Using Transcranial Magnetic Stimulation", Clinical Neurophysiology, Vol. 117, pp.821-827, 2006.
[4] S. Vucic, K. Black, P. Siao Tick Chong, D. Cros, "Cervical Nerve Root Stimulation. Part Ii: Findings in Primary Demyelinating Neuropathies and Motor Neuron Disease", Clinical Neurophysiology, Vol. 117, pp.398-404, 2006.
[5] J. S. Bae, S. S. Park, M. Kim, B. J. Kim, "Conduction Slowing in Painful Versus Painless Diabetic Neuropathy", Journal of Clinical Neuroscience, Vol. 14, pp.22-26, 2007.
[6] T. Hitomi, R. Kaji, N. Murase, N. Kohara, T. Mezaki, H. Nodera, T. Kawamura, A. Ikeda, H. Shibasaki, "Dynamic Change of Proximal Conduction in Demyelinating Neuropathies: A Cervical Magnetic Stimulation Combined with Maximum Voluntary Contraction", Clinical Neurophysiology, Vol. 118, pp.741-750, 2007.
[7] A. A. M. Pineda, K. Ogata, M. Osoegawa, H. Murai, H. Shigeto, T. Yoshiura, S. Tobimatsu, J.-i. Kira, "A Distinct Subgroup of Chronic Inflammatory Demyelinating Polyneuropathy with Cns Demyelination and a Favorable Response to Immunotherapy", Journal of the Neurological Sciences, Vol. 255, pp.1-6, 2007.
[8] G. E. Loeb, R. A. Peck, J. Martyniuk, "Toward the Ultimate Metal Microelectrode", Journal of Neuroscience Methods, Vol. 63, pp.175-183, 1995.
[9] D. Jaeger, S. Gilman, J. Wayne Aldridge, "A Multiwire Microelectrode for Single Unit Recording in Deep Brain Structures", Journal of Neuroscience Methods, Vol. 32, pp.143-148, 1990.
[10] K. D. Wise, J. B. Angell, A. Starr, "An Integrated-Circuit Approach to Extracellular Microelectrodes", IEEE Transactions on Biomedical Engineering, Vol. 17, pp.238-247, 1970.
[11] K. Najafi, K. D. Wise, T. Mochizuki, "A High-Yield Ic-Compatible Multichannel Recording Array", IEEE Transactions on Electron Devices, Vol. 32, pp.1206-1211, 1985.
[12] B. Qing and K. D. Wise, "Single-Unit Neural Recording with Active Microelectrode Arrays", IEEE Transactions on Biomedical Engineering, Vol. 48, pp.911-920, 2001.
[13] K. D. Wise, "Silicon Microsystems for Neuroscience and Neural Prostheses", Engineering in Medicine and Biology Magazine, Vol. 24, pp.22-29, 2005.
[14] P. K. Campbell, K. E. Jones, R. J. Huber, K. W. Horch, R. A. Normann, "A Silicon-Based, Three-Dimensional Neural Interface: Manufacturing Processes for an Intracortical Electrode Array", IEEE Transactions on Biomedical Engineering, Vol. 38, pp.758-768, 1991.
[15] P. Norlin, M. Kindlundh, A. Mouroux, K. Yoshida, U. G. Hofmann, "A 32-Site Neural Recording Probe Fabricated by Drie of Soi Substrates", Journal of Micromechanics and Microengineering, Vol. 12, pp.414-419, 2002.
[16] K. C. Cheung, K. Djupsund, Y. Dan, L. P. Lee, "Implantable Multichannel Electrode Array Based on Soi Technology", Journal of Microelectromechanical Systems, Vol. 12, pp.179-184, 2003.
[17] C. H. Chen, D. J. Yao, S. H. Tseng, S. W. Lu, C. C. Chiao, S. R. Yeh, "Micro Multi-Probes Electrode Array to Measure Neuron Signals", Biosensors and Bioelectronics, Vol. 24, pp.1911-1917, 2009.
[18] J. Li, H. T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, M. Meyyappan, "Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection", Nano Letters, Vol. 3, pp.597-602, 2003.
[19] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy, "Young's Modulus of Single-Walled Nanotubes", Physical Review B, Vol. 58, pp.14013-14019, 1998.
[20] J. J. Gooding, "Nanostructuring Electrodes with Carbon Nanotubes: A Review on Electrochemistry and Applications for Sensing", Electrochimica Acta, Vol. 50, pp.3049-3060, 2005.
[21] M. Musameh, N. S. Lawrence, J. Wang, "Electrochemical Activation of Carbon Nanotubes", Electrochemistry Communications, Vol. 7, pp.14-18, 2005.
[22] S. Shanmugam and A. Gedanken, "Electrochemical Properties of Bamboo-Shaped Multiwalled Carbon Nanotubes Generated by Solid State Pyrolysis", Electrochemistry Communications, Vol. 8, pp.1099-1105, 2006.
[23] N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. p. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, L. Ballerini, "Nanomaterials for Neural Interfaces", Advanced Materials, Vol. 21, pp.3970-4004, 2009.
[24] V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, L. Ballerini, "Carbon Nanotube Substrates Boost Neuronal Electrical Signaling", Nano Letters, Vol. 5, pp.1107-1110, 2005.
[25] M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, N. A. Kotov, "Stimulation of Neural Cells by Lateral Currents in Conductive Layer-by-Layer Films of Single-Walled Carbon Nanotubes", Advanced Materials, Vol. 18, pp.2975-2979, 2006.
[26] A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro, H. Markram, M. Prato, L. Ballerini, "Interfacing Neurons with Carbon Nanotubes: Electrical Signal Transfer and Synaptic Stimulation in Cultured Brain Circuits", The Journal of Neuroscience, Vol. 27, pp.6931-6936, 2007.
[27] K. Wang, H. A. Fishman, H. Dai, J. S. Harris, "Neural Stimulation with a Carbon Nanotube Microelectrode Array", Nano Lett., Vol. 6, pp.2043-2048, 2006.
[28] T. Gabay, M. Ben-David, I. Kalifa, R. Sorkin, Z. R. Abrams, E. Ben-Jacob, Y. Hanein, "Electro-Chemical and Biological Properties of Carbon Nanotube Based Multi-Electrode Arrays", Nanotechnology, Vol. 18, pp.1-6, 2007.
[29] E. W. Keefer, B. R. Botterman, M. I. Romero, A. F. Rossi, G. W. Gross, "Carbon Nanotube Coating Improves Neuronal Recordings", Nature Nanotechnology, Vol. 3, pp.434-439, 2008.
[30] B. M. Kim, T. Murray, H. H. Bau, "The Fabrication of Integrated Carbon Pipes with Sub-Micron Diameters", Nanotechnology, Vol. 16, pp.1317-1320, 2005.
[31] J. R. Freedman, D. Mattia, G. Korneva, Y. Gogotsi, G. Friedman, A. K. Fontecchio, "Magnetically Assembled Carbon Nanotube Tipped Pipettes", Applied Physics Letters, Vol. 90, p.103108, 2007.
[32] M. G. Schrlau, E. Brailoiu, S. Patel, Y. Gogotsi, N. J. Dun, H. H. Bau, "Carbon Nanopipettes Characterize Calcium Release Pathways in Breast Cancer Cells", Nanotechnology, Vol. 19, p.325102, 2008.
[33] M. G. Schrlau, E. M. Falls, B. L. Ziober, H. H. Bau, "Carbon Nanopipettes for Cell Probes and Intracellular Injection", Nanotechnology, Vol. 19, p.015101, 2008.
[34] R. Singhal, S. Bhattacharyya, Z. Orynbayeva, E. Vitol, G. Friedman, Y. Gogotsi, "Small Diameter Carbon Nanopipettes", Nanotechnology, Vol. 21, p.015304, 2010.
[35] F. Patolsky, B. P. Timko, G. Yu, Y. Fang, A. B. Greytak, G. Zheng, C. M. Lieber, "Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays", Science, Vol. 313, pp.1100-1104, 2006.
[36] H. Yoon, P. Hankins, S. Oh, R. E. Harbaugh, V. K. Varadan, "Heterostructured Iro2/Au Nanowire Electrodes and Unit Recordings from Hippocampal Rat Brain", Journal of Nanotechnology in Engineering and Medicine, Vol. 1, p.021006, 2010.
[37] H. C. Su, C. H. Chen, Y. C. Chen, D. J. Yao, T. R. Yew, "Low Temperature Synthesis of Multi-Walled Carbon Nanotubes," in NT08, Montpellier France, 2008, p. 142.
[38] H. C. Su, C. H. Chen, Y. C. Chen, D. J. Yao, H. Chen, Y. C. Chang, T. R. Yew, "Improving the Adhesion of Carbon Nanotubes to a Substrate Using Microwave Treatment", Carbon, Vol. 48, pp.805-812, 2010.
[39] P. Li, X. Lim, Y. Zhu, T. Yu, C. K. Ong, Z. Shen, A. Wee, C. H. Sow, "Tailoring Wettability Change on Aligned and Patterned Carbon Nanotube Films for Selective Assembly", The Journal of Physical Chemistry B, Vol. 111, pp.1672-1678, 2007.
[40] N. W. S. Kam, Z. Liu, H. Dai, "Functionalization of Carbon Nanotubes Via Ceavable Disulfide Bonds for Efficient Intracellular Delivery of Sirna and Potent Gene Silencing", Journal of the American Chemical Society Vol. 127, pp.12492-12493, 2005.
[41] N. W. S. Kam, M. O’Connell, J. A. Wisdom, H. Dai, "Carbon Nanotubes as Multifunctional Biological Transporters and near-Infrared Agents for Selective Cancer Cell Destruction", PNAS, Vol. 102, pp.11600-11605, 2005.
[42] M. Meyyappan, T. D. Barbara Nguyen-Vu, H. Chen, A. M. Cassell, R. Andrews, J. Li, "Vertically Aligned Carbon Nanofiber Arrays: An Advance toward Electrical-Neural Interfaces", Small, Vol. 2, pp.89-94, 2006.
[43] J. Wang, Y. Xu, X. Chen, X. Sun, "Capacitance Properties of Single Wall Carbon Nanotube/Polypyrrole Composite Films", Composites Science and Technology, Vol. 67, pp.2981-2985, 2007.
[44] Y. Zhong, X. Yu, R. Gilbert, R. V. Bellamkonda, "Stabilizing Electrode-Host Interfaces: A Tissue Engineering Approach", Journal of Rehabilitation Research and Development, Vol. 38, pp.627-632, 2001.
[45] J. W. Fawcett and R. A. Asher, "The Glial Scar and Central Nervous System Repair", Brain Research Bulletin, Vol. 49, pp.377-391, 1999.
[46] V. S. Polikov, P. A. Tresco, W. M. Reichert, "Response of Brain Tissue to Chronically Implanted Neural Electrodes", J. Neurosci. Methods, Vol. 148, pp.1-18, 2005.
[47] D. H. Szarowski, M. D. Andersen, S. Retterer, A. J. Spence, M. Isaacson, H. G. Craighead, J. N. Turner, W. Shain, "Brain Responses to Micro-Machined Silicon Devices", Brain Res., Vol. 983, pp.23-35, 2003.
[48] R. J. Vetter, J. C. Williams, J. F. Hetke, E. A. Nunamaker, D. R. Kipke, "Chronic Neural Recording Using Silicon-Substrate Microelectrode Arrays Implanted in Cerebral Cortex", IEEE Trans. Biomed. Eng., Vol. 51, pp.896-904, 2004.
[49] A. Branner, R. B. Stein, E. Fernandez, Y. Aoyagi, R. A. Normann, "Long-Term Stimulation and Recording with a Penetrating Microelectrode Array in Cat Sciatic Nerve", IEEE Trans. Biomed. Eng., Vol. 51, pp.146-157, 2004.
[50] J. Subbaroyan, D. C. Martin, D. R. Kipke, "A Finite-Element Model of the Mechanical Effects of Implantable Microelectrodes in the Cerebral Cortex ", Journal of Neural Engineering, Vol. 2, pp.103-113, 2005.
[51] K. C. Cheung, Y. Zhong, P. Renaud, R. Bellamkonda, "Comparison of Tissue Reaction to Implanted Polyimide and Silicon Microelectrode Arrays," in ECM, Lausanne Switzerland, 2005.
[52] K. C. Cheung, P. Renaud, H. Tanila, K. Djupsund, "Flexible Polyimide Microelectrode Array for in Vivo Recordings and Current Source Density Analysis", Biosens. Bioelectron., Vol. 22, pp.1783-1790, 2007.
[53] J. P. Seymour and D. R. Kipke, "Neural Probe Design for Reduced Tissue Encapsulation in Cns", Biomaterials, Vol. 28, pp.3594-3607, 2007.
[54] R. R. Richardson Jr., J. A. Miller, W. M. Reichert, "Polyimides as Biomaterials: Preliminary Biocompatibility Testing", Biomaterials, Vol. 14, pp.627-635, 1993.
[55] J. M. Seo, S. J. Kim, H. Chung, E. T. Kim, H. G. Yu, Y. S. Yu, "Biocompatibility of Polyimide Microelectrode Array for Retinal Stimulation", Materials Science and Engineering: C, Vol. 24, pp.185-189, 2004.
[56] S. Takeuchi, T. Suzuki, K. Mabuchi, H. Fujita, "3d Flexible Multichannel Neural Probe Array", Journal of Micromechanics and Microengineering, Vol. 14, pp.104-107, 2004.
[57] A. Mercanzini, K. Cheung, D. L. Buhl, M. Boers, A. Maillard, P. Colin, J.-C. Bensadoun, A. Bertsch, P. Renaud, "Demonstration of Cortical Recording Using Novel Flexible Polymer Neural Probes", Sens. Actuator A-Phys. , Vol. 143, pp.90-96, 2008.
[58] Y. Y. Chen, H. Y. Lai, S. H. Lin, C. W. Cho, W. H. Chao, C. H. Liao, S. Tsang, Y. F. Chen, S. Y. Lin, "Design and Fabrication of a Polyimide-Based Microelectrode Array: Application in Neural Recording and Repeatable Electrolytic Lesion in Rat Brain", Journal of Neuroscience Methods, Vol. 182, pp.6-16, 2009.
[59] S. Takeuchi, D. Ziegler, Y. Yoshida, K. Mabuchi, T. Suzuki, "Parylene Flexible Neural Probes Integrated with Microfluidic Channels", Lab on a Chip, Vol. 5, pp.519-523, 2005.
[60] G. Voskerician, M. S. Shive, R. S. Shawgo, H. v. Recum, J. M. Anderson, M. J. Cima, R. Langer, "Biocompatibility and Biofouling of Mems Drug Delivery Devices", Biomaterials, Vol. 24, pp.1959-1967, 2003.
[61] H. Lu, S. H. Cho, J. B. Lee, L. Cauller, M. R. Ortega, G. Hughes, "Su8-Based Micro Neural Probe for Enhanced Chronic in-Vivo Recording of Spike Signals from Regenerated Axons," in IEEE SENSORS, Daegu Korea, 2006, pp. 66-69.
[62] S. C. Chuang, C. H. Chen, H. C. Su, S. R. Yeh, D. J. Yao, "Design and Fabrication of Flexible Neural Microprobe for Three Dimensional Assembly," in IEEE MEMS, Hong Kong China, 2010, pp. 1003-1006.
[63] P. Rakic, "Specification of Cerebral Cortical Areas", Science, Vol. 241, pp.170-176, 1988.
[64] V. B. Mountcastle, "The Columnar Organization of the Neocortex", Brain, Vol. 120, pp.701-722, 1997.
[65] Y. Ying, M. N. Gulari, J. A. Wiler, K. D. Wise, "A Microassembled Low-Profile Three-Dimensional Microelectrode Array for Neural Prosthesis Applications", Microelectromechanical Systems, Journal of, Vol. 16, pp.977-988, 2007.
[66] A. A. A. Aarts, H. P. Neves, R. P. Puers, C. V. Hoof, "An Interconnect for out-of-Plane Assembled Biomedical Probe Arrays", Journal of Micromechanics and Microengineering, Vol. 18, p.064004, 2008.
[67] N. S. Shaar, G. Barbastathis, C. Livermore, "Cascaded Mechanical Alignment for Assembling 3d Mems," in IEEE MEMS, Tucsonn USA, 2008, pp. 1064-1068.
[68] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, Vol. 306, pp.666-669, 2004.
[69] A. K. Geim and K. S. Novoselov, "The Rise of Graphene", Nat. Mater., Vol. 6, pp.183-191, 2007.
[70] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, "Ultrahigh Electron Mobility in Suspended Graphene", Solid State Commun., Vol. 146, pp.351-355, 2008.
[71] I. W. Frank, D. M. Tanenbaum, A. M. v. d. Zande, P. L. McEuen, "Mechanical Properties of Suspended Graphene Sheets", J. Vac. Sci. Technol. B, Vol. 25, pp.2558-2561, 2007.
[72] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood, "Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor", Nat. Nanotechnol., Vol. 3, pp.210-215, 2008.
[73] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, P. Avouris, "100-Ghz Transistors from Wafer-Scale Epitaxial Graphene", Science, Vol. 327, p.662, 2010.
[74] Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, J. Kong, "Work Function Engineering of Graphene Electrode Via Chemical Doping", ACS Nano, Vol. 4, pp.2689-2694, 2010.
[75] X. Sun, Z. Liu, K. Welsher, J. Robinson, A. Goodwin, S. Zaric, H. Dai, "Nano-Graphene Oxide for Cellular Imaging and Drug Delivery", Nano Res., Vol. 1, pp.203-212, 2008.
[76] X. Dong, Y. Shi, W. Huang, P. Chen, L.-J. Li, "Electrical Detection of DNA Hybridization with Single-Base Specificity Using Transistors Based on Cvd-Grown Graphene Sheets", Advanced Materials, Vol. 22, pp.1649-1653, 2010.
[77] S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, C. Fan, "A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis", Advanced Functional Materials, Vol. 20, pp.453-459, 2010.
[78] Y. Zhang, S. F. Ali, E. Dervishi, Y. Xu, Z. Li, D. Casciano, A. S. Biris, "Cytotoxicity Effects of Graphene and Single-Wall Carbon Nanotubes in Neural Phaeochromocytoma-Derived Pc12 Cells", ACS Nano, Vol. 4, pp.3181-3186, 2010.
[79] C. Heo, J. Yoo, S. Lee, A. Jo, S. Jung, H. Yoo, Y. H. Lee, M. Suh, "The Control of Neural Cell-to-Cell Interactions through Non-Contact Electrical Field Stimulation Using Graphene Electrodes", Biomaterials, Vol. 32, pp.19-27, 2011.
[80] J. D. Weiland and D. J. Anderson, "Chronic Neural Stimulation with Thin-Film, Iridium Oxide Electrodes", IEEE Trans. Biomed. Eng., Vol. 47, pp.911-918, 2000.
[81] M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. S. Filho, R. Saito, "Raman Spectroscopy on Isolated Single Wall Carbon Nanotubes", Carbon, Vol. 40, pp.2043-2061, 2002.
[82] M. Endo, Y. A. Kim, Y. Fukai, T. Hayashi, M. Terrones, H. Terrones, M. S. Dresselhaus, "Comparison Study of Semi-Crystalline and Highly Crystalline Multiwalled Carbon Nanotubes", Applied Physics Letters, Vol. 79, pp.1531-1533, 2001.
[83] G. J. Brewer, J. R. Torricelli, E. K. Evege, P. J. Price, "Optimized Survival of Hippocampal Neurons in B27-Supplemented Neurobasal, a New Serum-Free Medium Combination", J Neurosci Res, Vol. 35, pp.567-576, 1993.
[84] A. V. Harreveld, "A Physiological Solution for Freshwater Crustaceans", Proc Soc Exp Biol Med, Vol. 34, pp.428-432, 1936.
[85] F. B. Krasne, "Excitation and Habituation of the Crayfish Escape Reflex: The Depolarizing Response in Lateral Giant Fibres of the Isolated Abdomen", Journal of Experimental Biology, Vol. 50, pp.29-46, 1969.
[86] W. Jensen, U. G. Hofmann, K. Yoshida, "Assessment of Subdural Insertion Force of Single-Tine Microelectrodes in Rat Cerebral Cortex," in Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE, 2003, pp. 2168-2171.
[87] H. Fricke, "The Theory of Electrolytic Polarization", Philosophical Magazine Series 7, Vol. 14, pp.310-318, 1932.
[88] N. I. Kovtyukhova, T. E. Mallouk, L. Pan, E. C. Dickey, "Individual Single-Walled Nanotubes and Hydrogels Made by Oxidative Exfoliation of Carbon Nanotube Ropes", Journal of the American Chemical Society, Vol. 125, pp.9761-9769, 2003.
[89] D. Yu and L. Dai, "Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors", The Journal of Physical Chemistry Letters, Vol. 1, pp.467-470, 2009.
[90] S. R. Yeh, Y. C. Chen, H. C. Su, T. R. Yew, H. H. Kao, Y. T. Lee, T. A. Liu, H. Chen, Y. C. Chang, P. Chang, H. Chen, "Interfacing Neurons Both Extracellularly and Intracellularly Using Carbon−Nanotube Probes with Long-Term Endurance", Langmuir, Vol. 25, pp.7718-7724, 2009.
[91] J. Wang, Analytical Electrochemistry. New York USA: John Wiley & Sons, Inc., 2000.
[92] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications. New York USA: John Wiley & Sons, Inc., 2001.
[93] S. J. Paik, Y. Park, D. I. D. Cho, "Roughened Polysilicon for Low Impedance Microelectrodes in Neural Probes", Journal of Micromechanics and Microengineering, Vol. 13, pp.373-379, 2003.
[94] J. Li, J. E. Koehne, A. M. Cassell, H. Chen, H. T. Ng, Q. Ye, W. Fan, J. Han, M. Meyyappan, "Inlaid Multi-Walled Carbon Nanotube Nanoelectrode Arrays for Electroanalysis", Electroanalysis, Vol. 17, pp.15-27, 2004.
[95] B. Y. Chang and S. M. Park, "Integrated Description of Electrode/Electrolyte Interfaces Based on Equivalent Circuits and Its Verification Using Impedance Measurements", Anal. Chem., Vol. 78, pp.1052-1060, 2006.
[96] V. M. W. Huang, V. Vivier, M. E. Orazem, N. Pébère, B. Tribollet, "The Apparent Constant-Phase-Element Behavior of an Ideally Polarized Blocking Electrode", Journal of The Electrochemical Society, Vol. 154, pp.C81-C88, 2007.
[97] K. T. Jeng, C. C. Chien, N. Y. Hsu, W. M. Huang, S. D. Chiou, S. H. Lin, "Fabrication and Impedance Studies of Dmfc Anode Incorporated with Cnt-Supported High-Metal-Content Electrocatalyst", Journal of Power Sources, Vol. 164, pp.33-41, 2007.
[98] C. H. Wang, H. Y. Du, Y. T. Tsai, C. P. Chen, C. J. Huang, L. C. Chen, K. H. Chen, H. C. Shih, "High Performance of Low Electrocatalysts Loading on Cnt Directly Grown on Carbon Cloth for Dmfc", Journal of Power Sources, Vol. 171, pp.55-62, 2007.
[99] T. V. Reshetenko, H. T. Kim, H. J. Kweon, "Modification of Cathode Structure by Introduction of Cnt for Air-Breathing Dmfc", Electrochimica Acta, Vol. 53, pp.3043-3049, 2008.
[100] T. Funakoshi, T. Inoue, H. Shimada, S. Kojima, "The Mechanisms of Nickel Uptake by Rat Primary Hepatocyte Cultures: Role of Calcium Channels", Toxicology, Vol. 124, pp.21-26, 1997.
[101] A. O. Lobo, E. F. Antunes, A. H. A. Machado, C. Pacheco-Soares, V. J. Trava-Airoldi, E. J. Corat, "Cell Viability and Adhesion on as Grown Multi-Wall Carbon Nanotube Films", Materials Science and Engineering: C, Vol. 28, pp.264-269, 2008.
[102] J. Ryhänen, M. Kallioinen, J. Tuukkanen, J. Junila, E. Niemelä, P. Sandvik, W. Serlo, "In Vivo Biocompatibility Evaluation of Nickel-Titanium Shape Memory Metal Alloy: Muscle and Perineural Tissue Responses and Encapsule Membrane Thickness", Journal of Biomedical Materials Research, Vol. 41, pp.481-488, 1998.
[103] D. Bogdanski, M. Köller, D. Müller, G. Muhr, M. Bram, H. P. Buchkremer, D. Stöver, J. Choi, M. Epple, "Easy Assessment of the Biocompatibility of Ni-Ti Alloys by in Vitro Cell Culture Experiments on a Functionally Graded Ni-Niti-Ti Material", Biomaterials, Vol. 23, pp.4549-4555, 2002.
[104] T. H. Yoon, E. J. Hwang, D. Y. Shin, S. I. Park, S. J. Oh, S. C. Jung, H. C. Shin, S. J. Kim, "A Micromachined Silicon Depth Probe for Multichannel Neural Recording", IEEE Transactions on Biomedical Engineering, Vol. 47, pp.1082-1087, 2000.
[105] T. Suzuki, K. Mabuchi, S. Takeuchi, "A 3d Flexible Parylene Probe Array for Multichannel Neural Recording," in IEEE EMBS, Capri Island Italy, 2003, pp. 154-156.
[106] W. Jensen, K. Yoshida, U. G. Hofmann, "In-Vivo Implant Mechanics of Flexible, Silicon-Based Acreo Microelectrode Arrays in Rat Cerebral Cortex", IEEE Trans. Biomed. Eng., Vol. 53, pp.934-940, 2006.
[107] T. J. Hall, M. Bilgen, M. F. Insana, T. A. Krouskop, "Phantom Materials for Elastography", Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, Vol. 44, pp.1355-1365, 1997.
[108] V. Normand, D. L. Lootens, E. Amici, K. P. Plucknett, P. Aymard, "New Insight into Agarose Gel Mechanical Properties", Biomacromolecules, Vol. 1, pp.730-738, 2000.
[109] R. Hoffmann, T. Stieglitz, N. H. Hosseini, S. Kisban, O. Paul, P. Ruther, "Comparative Study on the Insertion Behavior of Cerebral Microprobes," in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 2007, pp. 4711-4714.
[110] P. J. McCracken, A. Manduca, J. Felmlee, R. L. Ehman, "Mechanical Transient-Based Magnetic Resonance Elastography", Magn. Reson. Med., Vol. 53, pp.628-639, 2005.
[111] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, S. Iijima, "Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes", Nat. Nanotechnol., Vol. 5, pp.574-578, 2010.
[112] V. Szalay, L. Kovács, M. Wöhlecke, E. Libowitzky, "Stretching Potential and Equilibrium Length of the Oh Bond in Solids", Chem. Phys. Lett., Vol. 354, pp.56-61, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top