|
[1] M. A. B. Brazier, A History of Neurophysiology in the 19th Century. New York USA: Raven Press, 1988. [2] A. L. Hodgkin and A. F. Huxley, "Action Potentials Recorded from inside a Nerve Fibre", Nature, Vol. 144, pp.710-711, 1939. [3] Z. Aranyi, G. Szabo, B. Szepesi, A. Folyovich, "Proximal Conduction Abnormality of the Facial Nerve in Miller Fisher Syndrome: A Study Using Transcranial Magnetic Stimulation", Clinical Neurophysiology, Vol. 117, pp.821-827, 2006. [4] S. Vucic, K. Black, P. Siao Tick Chong, D. Cros, "Cervical Nerve Root Stimulation. Part Ii: Findings in Primary Demyelinating Neuropathies and Motor Neuron Disease", Clinical Neurophysiology, Vol. 117, pp.398-404, 2006. [5] J. S. Bae, S. S. Park, M. Kim, B. J. Kim, "Conduction Slowing in Painful Versus Painless Diabetic Neuropathy", Journal of Clinical Neuroscience, Vol. 14, pp.22-26, 2007. [6] T. Hitomi, R. Kaji, N. Murase, N. Kohara, T. Mezaki, H. Nodera, T. Kawamura, A. Ikeda, H. Shibasaki, "Dynamic Change of Proximal Conduction in Demyelinating Neuropathies: A Cervical Magnetic Stimulation Combined with Maximum Voluntary Contraction", Clinical Neurophysiology, Vol. 118, pp.741-750, 2007. [7] A. A. M. Pineda, K. Ogata, M. Osoegawa, H. Murai, H. Shigeto, T. Yoshiura, S. Tobimatsu, J.-i. Kira, "A Distinct Subgroup of Chronic Inflammatory Demyelinating Polyneuropathy with Cns Demyelination and a Favorable Response to Immunotherapy", Journal of the Neurological Sciences, Vol. 255, pp.1-6, 2007. [8] G. E. Loeb, R. A. Peck, J. Martyniuk, "Toward the Ultimate Metal Microelectrode", Journal of Neuroscience Methods, Vol. 63, pp.175-183, 1995. [9] D. Jaeger, S. Gilman, J. Wayne Aldridge, "A Multiwire Microelectrode for Single Unit Recording in Deep Brain Structures", Journal of Neuroscience Methods, Vol. 32, pp.143-148, 1990. [10] K. D. Wise, J. B. Angell, A. Starr, "An Integrated-Circuit Approach to Extracellular Microelectrodes", IEEE Transactions on Biomedical Engineering, Vol. 17, pp.238-247, 1970. [11] K. Najafi, K. D. Wise, T. Mochizuki, "A High-Yield Ic-Compatible Multichannel Recording Array", IEEE Transactions on Electron Devices, Vol. 32, pp.1206-1211, 1985. [12] B. Qing and K. D. Wise, "Single-Unit Neural Recording with Active Microelectrode Arrays", IEEE Transactions on Biomedical Engineering, Vol. 48, pp.911-920, 2001. [13] K. D. Wise, "Silicon Microsystems for Neuroscience and Neural Prostheses", Engineering in Medicine and Biology Magazine, Vol. 24, pp.22-29, 2005. [14] P. K. Campbell, K. E. Jones, R. J. Huber, K. W. Horch, R. A. Normann, "A Silicon-Based, Three-Dimensional Neural Interface: Manufacturing Processes for an Intracortical Electrode Array", IEEE Transactions on Biomedical Engineering, Vol. 38, pp.758-768, 1991. [15] P. Norlin, M. Kindlundh, A. Mouroux, K. Yoshida, U. G. Hofmann, "A 32-Site Neural Recording Probe Fabricated by Drie of Soi Substrates", Journal of Micromechanics and Microengineering, Vol. 12, pp.414-419, 2002. [16] K. C. Cheung, K. Djupsund, Y. Dan, L. P. Lee, "Implantable Multichannel Electrode Array Based on Soi Technology", Journal of Microelectromechanical Systems, Vol. 12, pp.179-184, 2003. [17] C. H. Chen, D. J. Yao, S. H. Tseng, S. W. Lu, C. C. Chiao, S. R. Yeh, "Micro Multi-Probes Electrode Array to Measure Neuron Signals", Biosensors and Bioelectronics, Vol. 24, pp.1911-1917, 2009. [18] J. Li, H. T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, M. Meyyappan, "Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection", Nano Letters, Vol. 3, pp.597-602, 2003. [19] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy, "Young's Modulus of Single-Walled Nanotubes", Physical Review B, Vol. 58, pp.14013-14019, 1998. [20] J. J. Gooding, "Nanostructuring Electrodes with Carbon Nanotubes: A Review on Electrochemistry and Applications for Sensing", Electrochimica Acta, Vol. 50, pp.3049-3060, 2005. [21] M. Musameh, N. S. Lawrence, J. Wang, "Electrochemical Activation of Carbon Nanotubes", Electrochemistry Communications, Vol. 7, pp.14-18, 2005. [22] S. Shanmugam and A. Gedanken, "Electrochemical Properties of Bamboo-Shaped Multiwalled Carbon Nanotubes Generated by Solid State Pyrolysis", Electrochemistry Communications, Vol. 8, pp.1099-1105, 2006. [23] N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. p. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, L. Ballerini, "Nanomaterials for Neural Interfaces", Advanced Materials, Vol. 21, pp.3970-4004, 2009. [24] V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, L. Ballerini, "Carbon Nanotube Substrates Boost Neuronal Electrical Signaling", Nano Letters, Vol. 5, pp.1107-1110, 2005. [25] M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, N. A. Kotov, "Stimulation of Neural Cells by Lateral Currents in Conductive Layer-by-Layer Films of Single-Walled Carbon Nanotubes", Advanced Materials, Vol. 18, pp.2975-2979, 2006. [26] A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro, H. Markram, M. Prato, L. Ballerini, "Interfacing Neurons with Carbon Nanotubes: Electrical Signal Transfer and Synaptic Stimulation in Cultured Brain Circuits", The Journal of Neuroscience, Vol. 27, pp.6931-6936, 2007. [27] K. Wang, H. A. Fishman, H. Dai, J. S. Harris, "Neural Stimulation with a Carbon Nanotube Microelectrode Array", Nano Lett., Vol. 6, pp.2043-2048, 2006. [28] T. Gabay, M. Ben-David, I. Kalifa, R. Sorkin, Z. R. Abrams, E. Ben-Jacob, Y. Hanein, "Electro-Chemical and Biological Properties of Carbon Nanotube Based Multi-Electrode Arrays", Nanotechnology, Vol. 18, pp.1-6, 2007. [29] E. W. Keefer, B. R. Botterman, M. I. Romero, A. F. Rossi, G. W. Gross, "Carbon Nanotube Coating Improves Neuronal Recordings", Nature Nanotechnology, Vol. 3, pp.434-439, 2008. [30] B. M. Kim, T. Murray, H. H. Bau, "The Fabrication of Integrated Carbon Pipes with Sub-Micron Diameters", Nanotechnology, Vol. 16, pp.1317-1320, 2005. [31] J. R. Freedman, D. Mattia, G. Korneva, Y. Gogotsi, G. Friedman, A. K. Fontecchio, "Magnetically Assembled Carbon Nanotube Tipped Pipettes", Applied Physics Letters, Vol. 90, p.103108, 2007. [32] M. G. Schrlau, E. Brailoiu, S. Patel, Y. Gogotsi, N. J. Dun, H. H. Bau, "Carbon Nanopipettes Characterize Calcium Release Pathways in Breast Cancer Cells", Nanotechnology, Vol. 19, p.325102, 2008. [33] M. G. Schrlau, E. M. Falls, B. L. Ziober, H. H. Bau, "Carbon Nanopipettes for Cell Probes and Intracellular Injection", Nanotechnology, Vol. 19, p.015101, 2008. [34] R. Singhal, S. Bhattacharyya, Z. Orynbayeva, E. Vitol, G. Friedman, Y. Gogotsi, "Small Diameter Carbon Nanopipettes", Nanotechnology, Vol. 21, p.015304, 2010. [35] F. Patolsky, B. P. Timko, G. Yu, Y. Fang, A. B. Greytak, G. Zheng, C. M. Lieber, "Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays", Science, Vol. 313, pp.1100-1104, 2006. [36] H. Yoon, P. Hankins, S. Oh, R. E. Harbaugh, V. K. Varadan, "Heterostructured Iro2/Au Nanowire Electrodes and Unit Recordings from Hippocampal Rat Brain", Journal of Nanotechnology in Engineering and Medicine, Vol. 1, p.021006, 2010. [37] H. C. Su, C. H. Chen, Y. C. Chen, D. J. Yao, T. R. Yew, "Low Temperature Synthesis of Multi-Walled Carbon Nanotubes," in NT08, Montpellier France, 2008, p. 142. [38] H. C. Su, C. H. Chen, Y. C. Chen, D. J. Yao, H. Chen, Y. C. Chang, T. R. Yew, "Improving the Adhesion of Carbon Nanotubes to a Substrate Using Microwave Treatment", Carbon, Vol. 48, pp.805-812, 2010. [39] P. Li, X. Lim, Y. Zhu, T. Yu, C. K. Ong, Z. Shen, A. Wee, C. H. Sow, "Tailoring Wettability Change on Aligned and Patterned Carbon Nanotube Films for Selective Assembly", The Journal of Physical Chemistry B, Vol. 111, pp.1672-1678, 2007. [40] N. W. S. Kam, Z. Liu, H. Dai, "Functionalization of Carbon Nanotubes Via Ceavable Disulfide Bonds for Efficient Intracellular Delivery of Sirna and Potent Gene Silencing", Journal of the American Chemical Society Vol. 127, pp.12492-12493, 2005. [41] N. W. S. Kam, M. O’Connell, J. A. Wisdom, H. Dai, "Carbon Nanotubes as Multifunctional Biological Transporters and near-Infrared Agents for Selective Cancer Cell Destruction", PNAS, Vol. 102, pp.11600-11605, 2005. [42] M. Meyyappan, T. D. Barbara Nguyen-Vu, H. Chen, A. M. Cassell, R. Andrews, J. Li, "Vertically Aligned Carbon Nanofiber Arrays: An Advance toward Electrical-Neural Interfaces", Small, Vol. 2, pp.89-94, 2006. [43] J. Wang, Y. Xu, X. Chen, X. Sun, "Capacitance Properties of Single Wall Carbon Nanotube/Polypyrrole Composite Films", Composites Science and Technology, Vol. 67, pp.2981-2985, 2007. [44] Y. Zhong, X. Yu, R. Gilbert, R. V. Bellamkonda, "Stabilizing Electrode-Host Interfaces: A Tissue Engineering Approach", Journal of Rehabilitation Research and Development, Vol. 38, pp.627-632, 2001. [45] J. W. Fawcett and R. A. Asher, "The Glial Scar and Central Nervous System Repair", Brain Research Bulletin, Vol. 49, pp.377-391, 1999. [46] V. S. Polikov, P. A. Tresco, W. M. Reichert, "Response of Brain Tissue to Chronically Implanted Neural Electrodes", J. Neurosci. Methods, Vol. 148, pp.1-18, 2005. [47] D. H. Szarowski, M. D. Andersen, S. Retterer, A. J. Spence, M. Isaacson, H. G. Craighead, J. N. Turner, W. Shain, "Brain Responses to Micro-Machined Silicon Devices", Brain Res., Vol. 983, pp.23-35, 2003. [48] R. J. Vetter, J. C. Williams, J. F. Hetke, E. A. Nunamaker, D. R. Kipke, "Chronic Neural Recording Using Silicon-Substrate Microelectrode Arrays Implanted in Cerebral Cortex", IEEE Trans. Biomed. Eng., Vol. 51, pp.896-904, 2004. [49] A. Branner, R. B. Stein, E. Fernandez, Y. Aoyagi, R. A. Normann, "Long-Term Stimulation and Recording with a Penetrating Microelectrode Array in Cat Sciatic Nerve", IEEE Trans. Biomed. Eng., Vol. 51, pp.146-157, 2004. [50] J. Subbaroyan, D. C. Martin, D. R. Kipke, "A Finite-Element Model of the Mechanical Effects of Implantable Microelectrodes in the Cerebral Cortex ", Journal of Neural Engineering, Vol. 2, pp.103-113, 2005. [51] K. C. Cheung, Y. Zhong, P. Renaud, R. Bellamkonda, "Comparison of Tissue Reaction to Implanted Polyimide and Silicon Microelectrode Arrays," in ECM, Lausanne Switzerland, 2005. [52] K. C. Cheung, P. Renaud, H. Tanila, K. Djupsund, "Flexible Polyimide Microelectrode Array for in Vivo Recordings and Current Source Density Analysis", Biosens. Bioelectron., Vol. 22, pp.1783-1790, 2007. [53] J. P. Seymour and D. R. Kipke, "Neural Probe Design for Reduced Tissue Encapsulation in Cns", Biomaterials, Vol. 28, pp.3594-3607, 2007. [54] R. R. Richardson Jr., J. A. Miller, W. M. Reichert, "Polyimides as Biomaterials: Preliminary Biocompatibility Testing", Biomaterials, Vol. 14, pp.627-635, 1993. [55] J. M. Seo, S. J. Kim, H. Chung, E. T. Kim, H. G. Yu, Y. S. Yu, "Biocompatibility of Polyimide Microelectrode Array for Retinal Stimulation", Materials Science and Engineering: C, Vol. 24, pp.185-189, 2004. [56] S. Takeuchi, T. Suzuki, K. Mabuchi, H. Fujita, "3d Flexible Multichannel Neural Probe Array", Journal of Micromechanics and Microengineering, Vol. 14, pp.104-107, 2004. [57] A. Mercanzini, K. Cheung, D. L. Buhl, M. Boers, A. Maillard, P. Colin, J.-C. Bensadoun, A. Bertsch, P. Renaud, "Demonstration of Cortical Recording Using Novel Flexible Polymer Neural Probes", Sens. Actuator A-Phys. , Vol. 143, pp.90-96, 2008. [58] Y. Y. Chen, H. Y. Lai, S. H. Lin, C. W. Cho, W. H. Chao, C. H. Liao, S. Tsang, Y. F. Chen, S. Y. Lin, "Design and Fabrication of a Polyimide-Based Microelectrode Array: Application in Neural Recording and Repeatable Electrolytic Lesion in Rat Brain", Journal of Neuroscience Methods, Vol. 182, pp.6-16, 2009. [59] S. Takeuchi, D. Ziegler, Y. Yoshida, K. Mabuchi, T. Suzuki, "Parylene Flexible Neural Probes Integrated with Microfluidic Channels", Lab on a Chip, Vol. 5, pp.519-523, 2005. [60] G. Voskerician, M. S. Shive, R. S. Shawgo, H. v. Recum, J. M. Anderson, M. J. Cima, R. Langer, "Biocompatibility and Biofouling of Mems Drug Delivery Devices", Biomaterials, Vol. 24, pp.1959-1967, 2003. [61] H. Lu, S. H. Cho, J. B. Lee, L. Cauller, M. R. Ortega, G. Hughes, "Su8-Based Micro Neural Probe for Enhanced Chronic in-Vivo Recording of Spike Signals from Regenerated Axons," in IEEE SENSORS, Daegu Korea, 2006, pp. 66-69. [62] S. C. Chuang, C. H. Chen, H. C. Su, S. R. Yeh, D. J. Yao, "Design and Fabrication of Flexible Neural Microprobe for Three Dimensional Assembly," in IEEE MEMS, Hong Kong China, 2010, pp. 1003-1006. [63] P. Rakic, "Specification of Cerebral Cortical Areas", Science, Vol. 241, pp.170-176, 1988. [64] V. B. Mountcastle, "The Columnar Organization of the Neocortex", Brain, Vol. 120, pp.701-722, 1997. [65] Y. Ying, M. N. Gulari, J. A. Wiler, K. D. Wise, "A Microassembled Low-Profile Three-Dimensional Microelectrode Array for Neural Prosthesis Applications", Microelectromechanical Systems, Journal of, Vol. 16, pp.977-988, 2007. [66] A. A. A. Aarts, H. P. Neves, R. P. Puers, C. V. Hoof, "An Interconnect for out-of-Plane Assembled Biomedical Probe Arrays", Journal of Micromechanics and Microengineering, Vol. 18, p.064004, 2008. [67] N. S. Shaar, G. Barbastathis, C. Livermore, "Cascaded Mechanical Alignment for Assembling 3d Mems," in IEEE MEMS, Tucsonn USA, 2008, pp. 1064-1068. [68] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, Vol. 306, pp.666-669, 2004. [69] A. K. Geim and K. S. Novoselov, "The Rise of Graphene", Nat. Mater., Vol. 6, pp.183-191, 2007. [70] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, "Ultrahigh Electron Mobility in Suspended Graphene", Solid State Commun., Vol. 146, pp.351-355, 2008. [71] I. W. Frank, D. M. Tanenbaum, A. M. v. d. Zande, P. L. McEuen, "Mechanical Properties of Suspended Graphene Sheets", J. Vac. Sci. Technol. B, Vol. 25, pp.2558-2561, 2007. [72] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood, "Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor", Nat. Nanotechnol., Vol. 3, pp.210-215, 2008. [73] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, P. Avouris, "100-Ghz Transistors from Wafer-Scale Epitaxial Graphene", Science, Vol. 327, p.662, 2010. [74] Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, J. Kong, "Work Function Engineering of Graphene Electrode Via Chemical Doping", ACS Nano, Vol. 4, pp.2689-2694, 2010. [75] X. Sun, Z. Liu, K. Welsher, J. Robinson, A. Goodwin, S. Zaric, H. Dai, "Nano-Graphene Oxide for Cellular Imaging and Drug Delivery", Nano Res., Vol. 1, pp.203-212, 2008. [76] X. Dong, Y. Shi, W. Huang, P. Chen, L.-J. Li, "Electrical Detection of DNA Hybridization with Single-Base Specificity Using Transistors Based on Cvd-Grown Graphene Sheets", Advanced Materials, Vol. 22, pp.1649-1653, 2010. [77] S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, C. Fan, "A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis", Advanced Functional Materials, Vol. 20, pp.453-459, 2010. [78] Y. Zhang, S. F. Ali, E. Dervishi, Y. Xu, Z. Li, D. Casciano, A. S. Biris, "Cytotoxicity Effects of Graphene and Single-Wall Carbon Nanotubes in Neural Phaeochromocytoma-Derived Pc12 Cells", ACS Nano, Vol. 4, pp.3181-3186, 2010. [79] C. Heo, J. Yoo, S. Lee, A. Jo, S. Jung, H. Yoo, Y. H. Lee, M. Suh, "The Control of Neural Cell-to-Cell Interactions through Non-Contact Electrical Field Stimulation Using Graphene Electrodes", Biomaterials, Vol. 32, pp.19-27, 2011. [80] J. D. Weiland and D. J. Anderson, "Chronic Neural Stimulation with Thin-Film, Iridium Oxide Electrodes", IEEE Trans. Biomed. Eng., Vol. 47, pp.911-918, 2000. [81] M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. S. Filho, R. Saito, "Raman Spectroscopy on Isolated Single Wall Carbon Nanotubes", Carbon, Vol. 40, pp.2043-2061, 2002. [82] M. Endo, Y. A. Kim, Y. Fukai, T. Hayashi, M. Terrones, H. Terrones, M. S. Dresselhaus, "Comparison Study of Semi-Crystalline and Highly Crystalline Multiwalled Carbon Nanotubes", Applied Physics Letters, Vol. 79, pp.1531-1533, 2001. [83] G. J. Brewer, J. R. Torricelli, E. K. Evege, P. J. Price, "Optimized Survival of Hippocampal Neurons in B27-Supplemented Neurobasal, a New Serum-Free Medium Combination", J Neurosci Res, Vol. 35, pp.567-576, 1993. [84] A. V. Harreveld, "A Physiological Solution for Freshwater Crustaceans", Proc Soc Exp Biol Med, Vol. 34, pp.428-432, 1936. [85] F. B. Krasne, "Excitation and Habituation of the Crayfish Escape Reflex: The Depolarizing Response in Lateral Giant Fibres of the Isolated Abdomen", Journal of Experimental Biology, Vol. 50, pp.29-46, 1969. [86] W. Jensen, U. G. Hofmann, K. Yoshida, "Assessment of Subdural Insertion Force of Single-Tine Microelectrodes in Rat Cerebral Cortex," in Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE, 2003, pp. 2168-2171. [87] H. Fricke, "The Theory of Electrolytic Polarization", Philosophical Magazine Series 7, Vol. 14, pp.310-318, 1932. [88] N. I. Kovtyukhova, T. E. Mallouk, L. Pan, E. C. Dickey, "Individual Single-Walled Nanotubes and Hydrogels Made by Oxidative Exfoliation of Carbon Nanotube Ropes", Journal of the American Chemical Society, Vol. 125, pp.9761-9769, 2003. [89] D. Yu and L. Dai, "Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors", The Journal of Physical Chemistry Letters, Vol. 1, pp.467-470, 2009. [90] S. R. Yeh, Y. C. Chen, H. C. Su, T. R. Yew, H. H. Kao, Y. T. Lee, T. A. Liu, H. Chen, Y. C. Chang, P. Chang, H. Chen, "Interfacing Neurons Both Extracellularly and Intracellularly Using Carbon−Nanotube Probes with Long-Term Endurance", Langmuir, Vol. 25, pp.7718-7724, 2009. [91] J. Wang, Analytical Electrochemistry. New York USA: John Wiley & Sons, Inc., 2000. [92] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications. New York USA: John Wiley & Sons, Inc., 2001. [93] S. J. Paik, Y. Park, D. I. D. Cho, "Roughened Polysilicon for Low Impedance Microelectrodes in Neural Probes", Journal of Micromechanics and Microengineering, Vol. 13, pp.373-379, 2003. [94] J. Li, J. E. Koehne, A. M. Cassell, H. Chen, H. T. Ng, Q. Ye, W. Fan, J. Han, M. Meyyappan, "Inlaid Multi-Walled Carbon Nanotube Nanoelectrode Arrays for Electroanalysis", Electroanalysis, Vol. 17, pp.15-27, 2004. [95] B. Y. Chang and S. M. Park, "Integrated Description of Electrode/Electrolyte Interfaces Based on Equivalent Circuits and Its Verification Using Impedance Measurements", Anal. Chem., Vol. 78, pp.1052-1060, 2006. [96] V. M. W. Huang, V. Vivier, M. E. Orazem, N. Pébère, B. Tribollet, "The Apparent Constant-Phase-Element Behavior of an Ideally Polarized Blocking Electrode", Journal of The Electrochemical Society, Vol. 154, pp.C81-C88, 2007. [97] K. T. Jeng, C. C. Chien, N. Y. Hsu, W. M. Huang, S. D. Chiou, S. H. Lin, "Fabrication and Impedance Studies of Dmfc Anode Incorporated with Cnt-Supported High-Metal-Content Electrocatalyst", Journal of Power Sources, Vol. 164, pp.33-41, 2007. [98] C. H. Wang, H. Y. Du, Y. T. Tsai, C. P. Chen, C. J. Huang, L. C. Chen, K. H. Chen, H. C. Shih, "High Performance of Low Electrocatalysts Loading on Cnt Directly Grown on Carbon Cloth for Dmfc", Journal of Power Sources, Vol. 171, pp.55-62, 2007. [99] T. V. Reshetenko, H. T. Kim, H. J. Kweon, "Modification of Cathode Structure by Introduction of Cnt for Air-Breathing Dmfc", Electrochimica Acta, Vol. 53, pp.3043-3049, 2008. [100] T. Funakoshi, T. Inoue, H. Shimada, S. Kojima, "The Mechanisms of Nickel Uptake by Rat Primary Hepatocyte Cultures: Role of Calcium Channels", Toxicology, Vol. 124, pp.21-26, 1997. [101] A. O. Lobo, E. F. Antunes, A. H. A. Machado, C. Pacheco-Soares, V. J. Trava-Airoldi, E. J. Corat, "Cell Viability and Adhesion on as Grown Multi-Wall Carbon Nanotube Films", Materials Science and Engineering: C, Vol. 28, pp.264-269, 2008. [102] J. Ryhänen, M. Kallioinen, J. Tuukkanen, J. Junila, E. Niemelä, P. Sandvik, W. Serlo, "In Vivo Biocompatibility Evaluation of Nickel-Titanium Shape Memory Metal Alloy: Muscle and Perineural Tissue Responses and Encapsule Membrane Thickness", Journal of Biomedical Materials Research, Vol. 41, pp.481-488, 1998. [103] D. Bogdanski, M. Köller, D. Müller, G. Muhr, M. Bram, H. P. Buchkremer, D. Stöver, J. Choi, M. Epple, "Easy Assessment of the Biocompatibility of Ni-Ti Alloys by in Vitro Cell Culture Experiments on a Functionally Graded Ni-Niti-Ti Material", Biomaterials, Vol. 23, pp.4549-4555, 2002. [104] T. H. Yoon, E. J. Hwang, D. Y. Shin, S. I. Park, S. J. Oh, S. C. Jung, H. C. Shin, S. J. Kim, "A Micromachined Silicon Depth Probe for Multichannel Neural Recording", IEEE Transactions on Biomedical Engineering, Vol. 47, pp.1082-1087, 2000. [105] T. Suzuki, K. Mabuchi, S. Takeuchi, "A 3d Flexible Parylene Probe Array for Multichannel Neural Recording," in IEEE EMBS, Capri Island Italy, 2003, pp. 154-156. [106] W. Jensen, K. Yoshida, U. G. Hofmann, "In-Vivo Implant Mechanics of Flexible, Silicon-Based Acreo Microelectrode Arrays in Rat Cerebral Cortex", IEEE Trans. Biomed. Eng., Vol. 53, pp.934-940, 2006. [107] T. J. Hall, M. Bilgen, M. F. Insana, T. A. Krouskop, "Phantom Materials for Elastography", Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, Vol. 44, pp.1355-1365, 1997. [108] V. Normand, D. L. Lootens, E. Amici, K. P. Plucknett, P. Aymard, "New Insight into Agarose Gel Mechanical Properties", Biomacromolecules, Vol. 1, pp.730-738, 2000. [109] R. Hoffmann, T. Stieglitz, N. H. Hosseini, S. Kisban, O. Paul, P. Ruther, "Comparative Study on the Insertion Behavior of Cerebral Microprobes," in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 2007, pp. 4711-4714. [110] P. J. McCracken, A. Manduca, J. Felmlee, R. L. Ehman, "Mechanical Transient-Based Magnetic Resonance Elastography", Magn. Reson. Med., Vol. 53, pp.628-639, 2005. [111] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, S. Iijima, "Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes", Nat. Nanotechnol., Vol. 5, pp.574-578, 2010. [112] V. Szalay, L. Kovács, M. Wöhlecke, E. Libowitzky, "Stretching Potential and Equilibrium Length of the Oh Bond in Solids", Chem. Phys. Lett., Vol. 354, pp.56-61, 2002.
|