跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 00:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周孟翰
研究生(外文):Chou, Meng-Han
論文名稱:Development of pH responsive polymeric gold nanoparticles as drug carrier and their application in cancer therapy
論文名稱(外文):酸鹼應答型高分子奈米金粒子藥物載體之研發及其在癌症治療上之應用
指導教授:羅建苗薛敬和薛敬和引用關係
指導教授(外文):Lo, Jem-MauHsiue, Ging-Ho
口試委員:羅建苗薛敬和駱俊良
口試日期:2011-07-13
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:77
中文關鍵詞:奈米金粒子酸鹼應答藥物載體癌症治療
相關次數:
  • 被引用被引用:0
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
Biocompatible nanoparticles for cancer therapy are of an interesting area across a number of science, engineering and biomedical disciplines. Particles with different sizes, shapes, and physical properties are considered to influence the organ accumulation and cell uptake. Herein, gold nanoparticle will be used as the inner core of a drug carrier for immobilizing anti-cancer drugs and PEG polymers. The outer shell of PEG polymers will act to avoid mononuclear phagocyte system recognition while to allow much tumor uptake in association with passive or active targeting. The density of PEG polymers will be regulated to prepare a suitable long circulation nanoparticles. Additionally, anti-cancer drug derivatives with hydrazone linkers will be designed to be sensitive to intracellular pH changes and degradable to release drugs from gold nanoparticles.
In this study, we have successfully prepared different mPEG-SH densities and different sizes of gold nanoparticles. The in vitro BSA stability and flow cytometer study showed that the minimized mPEG-SH density had the best BSA stability and the best size for cell endocytosis was about 50 nm. Furthermore, doxorubicin (DOX) was conjugated to gold nanoparticles via acidic pH-sensitive hydrazone linkers. DOX conjugated gold nanopartilces showed higher drug release at endosome pH 4.5~6.5 as compared to physiological pH 7.4. By cell proliferation assays, DOX conjugated 50 nm-PEG min gold nanopartilces showed more cytotoxicity compared to DOX conjugated 20 nm-PEG min gold nanopartilces, which was similar to free DOX, against HCT116 and HeLa cells.
In conclusion, this study demonstrated the optimal size and mPEG-SH density of gold nanopartilces in combination with pH sensitive doxorubicin derivative as a long circulation drug carrier for cancer therapy.

在化學、工程以及生物醫學等領域,生物可相容性的奈米粒子一直被廣泛的應用在癌症治療上。不同材料大小、形狀與物理性質的奈米粒子皆會影響細胞的吞噬能力以及體內器官的累積。在本實驗中,我們設計一藥物載體以金奈米粒子做為內核,並在表面上接枝聚乙烯醇高分子以及抗癌藥物。在奈米粒子表面接枝聚乙烯醇高分子,可避免體內單核吞噬細胞系統的辨識以增加在血液循環的時間,並透過主動或被動標的大量累積在腫瘤的位置。藉由調控表面聚乙烯醇高分子的密度製備出一具有長時間血液循環的金奈米粒子,並將抗癌藥物透過hydrazone的鍵結修飾成具酸鹼敏感性的衍生物。當藥物載體被細胞吞噬時,進入細胞endosome,因酸鹼值下降使得hydrazone的鍵結水解斷裂,進而將藥物從載體上釋放出來。
本研究成功製備出不同大小的金奈米粒子以及不同表面聚乙烯醇高分子的密度,透過胎牛血清穩定度與流式細胞儀的實驗,證明了表面接枝防止金奈米粒子聚集的最小值PEG高分子數量即具有良好的血清穩定度以及50奈米的大小是細胞吞噬較佳的粒徑。成功透過hydrazone鍵結以修飾DOX抗癌藥物使其能夠接枝上金奈米粒子的表面。在體外藥物釋放的實驗中,在pH值7.4模擬血液的環境之下,DOX抗癌藥物能夠穩定的存在金奈米粒子的表面上,而當pH值降低到4.5~6.5時,hydrazone的鍵結會快速水解斷裂使DOX抗癌藥物能夠釋放出來。在化學材料對於細胞毒性的實驗上,聚乙烯醇高分子接枝上金奈米粒子對於細胞是幾乎沒有毒性,而在接有DOX抗癌藥物的金奈米粒子,對於細胞的毒性則是50奈米大於20奈米並與單純的DOX抗癌藥物不相上下。本研究利用聚乙烯醇高分子以及抗癌藥物的衍生物修飾金奈米粒子並探討高分子密度與粒子大小對於細胞吞噬的影響,未來希望能成為一種安全的藥物傳遞的載體及應用於癌症治療。
List of Contents
Abstract
Chapter 1 Motivation and purpose 1
Chapter 2 Introduction 3
2.1 Nanoparticles: an excellent scaffold for biological applications. 4
2.2 Nanoparticles as drug delivery systems. 5
2.2.1 Positive targeting of drug delivey 8
2.2.2 Long-circulating nanoparticles 10
2.3 Material property 12
2.3.1 The property of polyethylene glycol. 13
2.3.2 Pegylated modification. 14
2.4 Important properties of gold nanoparticles. 16
2.4.1 Surface plasmon absorption property of gold nanoparticles. 18
2.4.2 Cellular uptake of gold nanoparticles. 22
2.4.3 Current Applications of Gold Nanoparticles. 24
Chapter 3 Materials and methods 28
3.1 Reagents 28
3.2 Equipment and Instruments 30
3.3 Cell lines and buffers 31
3.4 Methods 32
3.4.1 Synthesis of methoxy poly(ethylene glycol)-undecyl mercaptane 32
3.4.2 Determination of free thiol group content. 33
3.4.3 General gold nanoparticles synthesis technique. 34
3.4.4 To quantitatively determine the maximum of mPEG-SH on gold nanoparticles surface. 35
3.4.5 Preparation of pegylated gold nanoparticles. 36
3.4.6 The copper grid of pegylated gold nanoparticles for TEM. 36
3.4.7 Stability of pegylated gold nanoparticles in phosphate buffer and bovine serum albumin (BSA) solution. 37
3.4.8 Cell uptake experiments of different PEG density by Flow cytometer. 37
3.4.9 Synthesis of doxorubicin derivatives for pH inductive. 38
3.4.10 Prepare Dox conjugated 20 nm-PEG min and 50 nm-PEG min gold nanoparticles. 39
3.4.11 The drug loading efficiency and loading content of the nanoparticles. 40
3.4.12 Drug releasing of Dox conjugated gold nanoparticles in phosphate buffer. 40
3.4.13 Cytotoxicity of pegylated gold nanoparticles and Dox conjugated gold nanoparticles. 41
Chapter 4 Results and discussion 42
4.1 Characterization of mPEG derivative. 42
4.1.1 Methoxy poly(ethylene glycol)-undecene. 42
4.1.2 Methoxy poly(ethylene glycol)-undecane thioacetate ester. 44
4.1.3 Methoxy poly(ethylene glycol)-undecyl mercaptane. 45
4.2 Determination of free thiol group content using Ellman’s assay. 48
4.3 Colloidal gold nanoparticles synthesis. 49
4.4 To quantitatively determine the maximum of mPEG-SH on gold nanoparticles surface. 52
4.5 Characterization of PEGylated gold nanoparticles. 53
4.6 Stability of pegylated gold nanoparticles in phosphate buffer and bovine serum albumin (BSA) solution. 55
4.7 Cell uptake experiments of different PEG density by Flow cytometry. 58
4.8 Characterization of doxorubicin derivatives. 61
4.8.1 3-(2-Pyridyldithio) propionyl hydrazide (PDPH). 61
4.8.2 Doxorubicin 13-{3-(2-pyridyldithio) propionyl} hydrazone hydrochloride. 62
4.8.3 Doxorubicin hydrazone thiol. 63
4.9 The drug loading efficiency and loading content of the Dox conjugated gold nanoparticles. 65
4.10 Drug releasing of DOX conjugated gold nanoparticles in phosphate buffer. 67
4.11 Cytotoxicity of pegylated GNPs. 69
4.12 Cytotoxicity of DOX conjugated gold nanopartilces. 70
Chapter 5 Conclusion 74
Reference 76


[1] A. P. Alivisatos, "Semiconductor Clusters, Nanocrystals, and Quantum Dots," Science, vol. 271, pp. 933-937, 1996 1996.
[2] C. A. Mirkin, et al., "A DNA-based method for rationally assembling nanoparticles into macroscopic materials," Nature, vol. 382, pp. 607-9, 1996.
[3] L. R. Hirsch, et al., "Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance," Proc Natl Acad Sci U S A, vol. 100, pp. 13549-54, 2003.
[4] T. M. Allen and P. R. Cullis, "Drug delivery systems: entering the mainstream," Science, vol. 303, pp. 1818-22, 2004.
[5] R. Hong, et al., "Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers," J Am Chem Soc, vol. 128, pp. 1078-9, 2006.
[6] S. Giri, et al., "Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles," Angew Chem Int Ed Engl, vol. 44, pp. 5038-44, 2005.
[7] Y. Bae, et al., "Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change," Angew Chem Int Ed Engl, vol. 42, pp. 4640-3, 2003.
[8] J. Zhang and R. D. K. Misra, "Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: Core-shell nanoparticle carrier and drug release response," Acta Biomaterialia, vol. 3, pp. 838-850, 2007.
[9] D. Neuman, et al., "Photosensitized NO release from water-soluble nanoparticle assemblies," J Am Chem Soc, vol. 129, pp. 4146-7, 2007.
[10] A. M. Derfus, et al., "Remotely Triggered Release from Magnetic Nanoparticles," Advanced Materials, vol. 19, pp. 3932-3936, 2007.
[11] R. Haag and F. Kratz, "Polymer Therapeutics: Concepts and Applications," Angew. Chem. Int. Ed. , vol. 45, pp. 1198 - 1215, 2006.
[12] M. Y and M. H, "A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs," Cancer Research, vol. 46, pp. 6387-6392, 1986.
[13] M. Yuan F Fau - Dellian, et al., "Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size," 19950918 DCOM- 19950918.
[14] S. A. Skinner, et al., "Microvascular architecture of experimental colon tumors in the rat," Cancer Res, vol. 50, pp. 2411-7, 1990.
[15] H. Maeda, et al., "Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect," Eur J Pharm Biopharm, vol. 71, pp. 409-19, 2009.
[16] G. Storm, et al., "Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system," Advanced Drug Delivery Reviews, vol. 17, pp. 31-48, 1995.
[17] C. Fang, et al., "In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size," Eur J Pharm Sci, vol. 27, pp. 27-36, 2006.
[18] C. J. Rijcken, et al., "Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: an attractive tool for drug delivery," J Control Release, vol. 120, pp. 131-48, 2007.
[19] J. M. Harris, "Polyethylene glycol) chemistry: biotechnical and biomedical applications," Plenum Press, New York, 1992.
[20] A. Vonarbourg, et al., "Parameters influencing the stealthiness of colloidal drug delivery systems," Biomaterials, vol. 27, pp. 4356-73, 2006.
[21] J. H. Lee, et al., "Surface properties of copolymers of alkyl methacrylates with methoxy (polyethylene oxide) methacrylates and their application as protein-resistant coatings," Biomaterials, vol. 11, pp. 455-64, 1990.
[22] P. Kingshott, et al., "Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins," Biomaterials, vol. 23, pp. 2043-56, 2002.
[23] S. A. Johnstone, et al., "Surface-associated serum proteins inhibit the uptake of phosphatidylserine and poly(ethylene glycol) liposomes by mouse macrophages," Biochimica et Biophysica Acta (BBA) - Biomembranes, vol. 1513, pp. 25-37, 2001.
[24] C. J. Murphy, et al., "Gold nanoparticles in biology: beyond toxicity to cellular imaging," Acc Chem Res, vol. 41, pp. 1721-30, 2008.
[25] S. Link and M. A. El-Sayed, "Optical properties and ultrafast dynamics of metallic nanocrystals," Annu Rev Phys Chem, vol. 54, pp. 331-66, 2003.
[26] M. Ferrari, "Nanogeometry: beyond drug delivery," Nat Nanotechnol, vol. 3, pp. 131-2, 2008.
[27] B. D. Chithrani, et al., "Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells," Nano Letters, vol. 6, pp. 662-668, 2006.
[28] S. D. Perrault, et al., "Mediating Tumor Targeting Efficiency of Nanoparticles Through Design," Nano Letters, vol. 9, pp. 1909-1915, 2009.
[29] J. J. Storhoff and C. A. Mirkin, "Programmed Materials Synthesis with DNA," Chem Rev, vol. 99, pp. 1849-1862, 14 1999.
[30] D. Zheng, et al., "Aptamer nano-flares for molecular detection in living cells," Nano Lett, vol. 9, pp. 3258-61, 2009.
[31] X. Qian, et al., "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nat Biotechnol, vol. 26, pp. 83-90, 2008.
[32] M. P. Melancon, et al., "In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy," Mol Cancer Ther, vol. 7, pp. 1730-9, 2008.
[33] J. Turkevich, et al., "A study of the nucleation and growth processes in the synthesis of colloidal gold," Discussions of the Faraday Society, vol. 11, pp. 55-75, 1951.
[34] G. Frens, "Controlled Nucleation for Regulation of Particle-Size in MonodisperseGold Suspensions," Nature-Physical Science, vol. 241, pp. 20-22, 1973.
[35] W. P. Wuelfing, et al., "Nanometer Gold Clusters Protected by Surface-Bound Monolayers of Thiolated Poly(ethylene glycol) Polymer Electrolyte," Journal of the American Chemical Society, vol. 120, pp. 12696-12697, 1998.
[36] L. M. Bareford and P. W. Swaan, "Endocytic mechanisms for targeted drug delivery," Adv Drug Deliv Rev, vol. 59, pp. 748-58, 2007.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊