|
Alpaydin, E. (2010). Introduction to Machine Learning, The MIT Press. Alpaydin, E., & Kaynak, C. (1998). Cascading classifiers. Kybernetika, 34, 369-374. Bauer, E., & Kohavi, R. (1999). An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Machine Learning, 36(1), 105-139. doi: 10.1023/a:1007515423169 Bellotti, T., & Crook, J. (2011). Loss given default models incorporating macroeconomic variables for credit cards. International Journal of Forecasting, In Press, Corrected Proof, Available online 12 February 2011, ISSN 0169-2070, DOI: 10.1016/j.ijforecast.2010.08.005. Boyd, R. (2011). Make your Business App Intelligent with the Google Prediction API, from http://googleappsdeveloper.blogspot.com/2011/06/make-your-business-app-intelligent-with.html Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. Chen, L., Lin, Lu, Kairui, Feng, Wenjin, Li, Jie, Song, Lulu, Zheng, Youlang, Yuan, Zhenbin, Zeng, Kaiyan, Feng, Wencong, Lu, Yudong, Cai, (2009). Multiple classifier integration for the prediction of protein structural classes. Journal of Computational Chemistry, 30(14), 2248-2254. doi: 10.1002/jcc.21230 Chibelushi, C. C., Deravi, F., & Mason, J. S. D. (1999). Adaptive classifier integration for robust pattern recognition. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 29(6), 902-907. Dunn, L. F., & Kim, T. H. (1999). An empirical investigation of credit card default. Working Papers. Freund, Y., & Schapire, R. (1995). A desicion-theoretic generalization of on-line learning and an application to boosting. Computational Learning Theory. Springer Berlin / Heidelberg. 904: 23-37 Gaffney, C. (2008). Detecting Trends in the Prediction of the Buried Past: A Review of Geophysical Techniques in Archaeology. Archaeometry, 50(2), 313-336. doi: 10.1111/j.1475-4754.2008.00388.x Hsieh, W. K., Liu, S. M., & Hsieh, S. Y. (2006). Hybrid Neural Network Bankruptcy Prediction: An Integration of Financial Ratios, Intellectual Capital Ratios, MDA and Neural Network Learning. Joint Conference on Information Science. doi:10.2991/jcis.2006.323 Kim, E., & Ko, J. (2005). Dynamic classifier integration method. Multiple Classifier Systems, 97-107. Kim, J., Won, C., & Bae, J. K. (2010). A knowledge integration model for the prediction of corporate dividends. Expert Systems with Applications, 37(2), 1344-1350. doi: 10.1016/j.eswa.2009.06.035 Kittler, J., Hatef, M., Duin, R. P. W., & Matas, J. (1998). On combining classifiers. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(3), 226-239. Koh, H. C., Tan, W. C., & Goh, C. P. (2006). A two-step method to construct credit scoring models with data mining techniques. International Journal of Business and Information, 1(1), 96-118. Lin, H.-E., Zito, R., & Taylor, M. A. P. (2005). A review of travel-time prediction in transport and logistics. Proceedings of the Eastern Asia Society for transportation studies, 5, 1433-1448. Noble, W. S., & Ben-Hur, A. (2008). Integrating Information for Protein Function Prediction. Bioinformatics - From Genomes to Therapies, Wiley-VCH Verlag GmbH: 1297-1314. Pereira, R., & Seabra Lopes, L. (2009). Learning Visual Object Categories with Global Descriptors and Local Features. Progress in Artificial Intelligence, 225-236. Quinlan, J. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc. Ravi Kumar, P., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review. European Journal of Operational Research, 180(1), 1-28. doi: 10.1016/j.ejor.2006.08.043 Re, M., & Valentini, G. (2010). Integration of heterogeneous data sources for gene function prediction using decision templates and ensembles of learning machines. Neurocomputing, 73(7-9), 1533-1537. doi: 10.1016/j.neucom.2009.12.012 Re, M., & Valentini, G. (2011). Ensemble methods: a reviewData Mining and Machine Learning for Astronomical Applications: Chapman & Hall. Retrieved from http://eprints.pascal-network.org/archive/00007721/01/ens.review.revised.pdf. Reyes, E. P. (2010). A systems thinking approach to business intelligence solutions based on cloud computing, from http://dspace.mit.edu/handle/1721.1/59267 Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197-227. Steenackers, M. (1989). A credit scoring model for personal loans. Insurance: Mathematics and Economics, 8(1), 31-34. Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., & Lin, W.-Y. (2009). Intrusion detection by machine learning: A review. Expert Systems with Applications, 36(10), 11994-12000. doi: 10.1016/j.eswa.2009.05.029 Werner, M., & Whitfield, D. (2007). On model integration in operational flood forecasting. Hydrological Processes, 21(11), 1519-1521. doi: 10.1002/hyp.6726 Wolpert, D. H. (1992). Stacked generalization*. Neural networks, 5(2), 241-259. Yang, C. S., Wei, C. P., Yuan, C. C., & Schoung, J. Y. (2010). Predicting the length of hospital stay of burn patients: Comparisons of prediction accuracy among different clinical stages. Decision Support Systems, 50(1), 325-335. Yeh, I. (2009). The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Systems with Applications, 36(2), 2473-2480.
|