跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/20 07:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王心怡
研究生(外文):HSIN YI WANG
論文名稱:基於Reusability Tree及Search Guider法則建構
論文名稱(外文):Building Up B2C E-commerce Personalized Recommendation System Based on Reusability Tree and Search Guider Approaches
指導教授:王俊嘉王俊嘉引用關係
指導教授(外文):Chun-Chia Wang
口試委員:王俊嘉洪正興陳永輝
口試委員(外文):Chun-Chia WangHONG ZHENG XINGCHEN YONG HUI
口試日期:2010-07-26
學位類別:碩士
校院名稱:北臺灣科學技術學院
系所名稱:電子商務研究所
學門:商業及管理學門
學類:一般商業學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:65
中文關鍵詞:個人化電子商務推薦系統Search GuiderReusability Tree
外文關鍵詞:Search GuiderReusability TreePersonalized Recommendation System
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:2
電子商務在現代社會中儼然成為另一個小型的社會,我們每天生活的必需品,皆可從電子商務中取得。然而,網路快速的傳遞與資訊開放共享,使得大量的資料流通於網際網路上,因而造成網路上不正確的資訊也越來越多。使用者要在眾多的搜尋結果中,找到一個真正符合自己所需的資訊是相當困難的。
因此,我們是需要一套個人化的電子商務推薦系統,來提高商務的傳遞的正確性,讓商務的兩端都可以執行的更有效率。尤其是在對於B2C的交易是必須具有更高的成效,個人化的服務或具個人化的資訊,是較具有服務的效果。希望透過本研究能呈現出更完善,具高度精準性的個人化電子商務推薦系統。
本研究之個人化電子商務推薦系統,是經由淡江大學網路多媒體實驗室(Mine Lab)所提出的Reusability Tree架構而建立的〝Search Guider〞系統,來做為本論文的研究方法,希望可以準確地找到產品之間的相關性。
本研究在結論的部分提出二個重點。
1. 透過遠距教學的基本封裝概念,運用在個人化的推薦系統。
2. 本研究提供了商務兩端更便捷的個人化服務,不論是從客戶端或商業端來看皆是具有效益的。
電子商務所提供的就是快速及即時性,而準確的搜尋及快速系統的建立,更彰顯其重要性。
ABSTRACT
E-commerce in modern society has become another small community, our daily necessities up can get from e-commerce. However, the network fast delivery and open sharing of information, making a lot of information flow on the Internet, makes the network information is not correct more and more. Users in many search results to find a truly consistent with the information they need is difficult to.
Therefore, we need a personalized e-commerce recommendation system, to improve the accuracy of the transmission business, so that both sides can do business more efficiently. Especially in the B2C transactions is to have a higher effectiveness, personal service or a personalized information is more effective with e-service. Hope that this research can present a more comprehensive, high precision of personalized recommendation system.
In this study, personalized e-commerce recommendation system, is through the establishment of Reusability Tree by the established framework "Search Guider" system to do the research for this article, and I hope you can find the correlation between the products.
In conclusion, this study presents two key parts. (1) The basic concept of distance learning can be used in personalized recommendation system. (2) This study provides a more convenient business of personal service, whether from a client or business side view of all is a benefit. E-commerce is fast and provides instant, accurate and fast search system, set up, more emphasis on its importance.
目  錄
中文摘要 I
ABSTRACT III
誌謝 IV
目  錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 9
1.1. 研究背景與動機 10
1.2. 研究目的 13
1.3. 研究流程 14
第二章 文獻探討 16
2.1推薦系統 16
第三章 研究方法 26
3.1 SEARCH GUIDER 系統概念 26
3.2開發工具與環境 32
3.3系統介面與操作說明 34
第四章 案例分析 39
4.1 MATE DATE 39
4.2搜尋結果 41
第五章 結論與未來展望 45
5.1結論 45
5.2未來展望 45
參考文獻 47
附 錄 55

表目錄
表4-1-1 Metadata 40


參考文獻
1.Corritore, C.L., Kracher, B., Wiedenbeck S. (2001). Trust in the online environment. In M.J. Smith et al.(Eds.), Usability Evaluation and Interface Design:Cognitive Engineering, Intelligent Agents and VirtualReality, 1548-1552. Mahway, NJ: Erlbaum.
2.Fogg, B.J. (2002). Persuasive Technology: UsingComputers To Change What We Think and Do. SanFrancisco: Morgan Kaufman.
3.Giddens, A. (1990). The Consequences of Modernity.Stanford: Stanford University Press.
4.Luhmann, N. (1979). Trust and Power. Cichester:Wiley.
5.Olson, J.S., Zheng, J., Bos, N., Olson, G.M., & Veinott,E. (2002). Trust without Touch: Jumpstarting Long-Distance Trust with Initial Social Activities.Proceedings of CHI2002, 141-146. April 20-25,Minneapolis, MN, US.
6.Riegelsberger, J., Sasse, M. A., & McCarthy, J. D.(forthcoming). The Researcher's Dilemma: EvaluatingTrust in Computer Mediated Communications.International Journal of Human Computer Studies.
7.Riegelsberger, J. & Sasse, M.A. (forthcoming).Designing E-Commerce Applications for ConsumerTrust. In O. Petrovic (Ed.). Trust in the NetworkEconomy. Wien: Springer.
8.Riegelsberger, J., Sasse, M.A. & McCarthy, J. D.(forthcoming). Shiny Happy People Building Trust?Photos on e-Commerce Websites and Consumer Trust.Proceedings of CHI2003, 5-10 April, Ft. Lauderdale,FL, US.
9.Riegelsberger, J., Sasse, M.A., & McCarthy, J. D.(2002). Eye-Catcher or Blind Spot? The Effect ofPhotographs of Faces on E-Commerce Sites. 2nd IFIPConference on e-commerce, e-business, e-government,383-398, Oct 7-9, Lisbon, Portugal.
10.Riegelsberger, J. & Sasse, M.A. (2002). Face it - Photosdon’t make a Web Site Trustworthy. ExtendedAbstracts CHI2002, 742-743, April 20-25, Minneapolis,MN, US.
11.Riegelsberger, J. & Sasse, M. A. (2001). Trustbuildersand Trustbusters: The Role of Trust Cues in Interfacesto e-Commerce Applications. 1st IFIP Conference on ecommerce,e-business, e-government, 17-30, Oct. 3-5,Zurich, Switzerland.
12. J.H Chang and W.S. Lee, "Finding Recent Frequent Itemsets Adaptively over Online Data Streams", in Proceedings of ACM SIGKDD, 2003, pp. 487-492.
13.Langville, A. N., Meyer, C. D. (2006). Google's PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press. ISBN 0-691-12202-4.
14.Peng Yue, Liping Di, Wenli Yang, Genong Yu, Peisheng Zhao, Jianya Gong,” Semantics-enabled Metadata Generation, Tracking and Validation in Geospatial Web Service Composition for Mining Distributed Images”, Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International 23-28 July 2007 Page(s):334 – 337
15.Vinay, V., Cox, I. J., Milic-Frayling, N., Wood, K. Evaluating Relevance Feedback Algorithms for Searching on Small Displays. ECIR 2005.
16.Wu, H. C., Luk R. W. P., Wong K. F., & Kwok K. L. (2008). Interpreting TF-IDF term weights as making relevance decisions. ACM Transactions on Information Systems (TOIS), Volume 26 Issue 3, 13-49.
17.Burke, R., Hybrid Rccommender Systems: Survey and Expcriments,User Modeling and User-Adapted Interaction, 12 (2002) 331-370.Heylighcn, F., Collaborative Filtering. Vol. 2003.Kim, C. and Kim, J., A Recommendation Algorithm Using Multi-Level
18.Association Rules. IEEWIC International Confercnce on WebIntelligence, Seoul, Korea, 2003, pp. 524-527.Kwak, M. and Cho, D.-S.,C ollaboralivc Filtering with Automatic Rating for Rccommendation. IEEE International Symposium onIndustrial Electronics, Vol. I, Busan, Korea, 2001, pp. 625-628 v0l.l.
19.Sarwar, B.M., Karypis, G., Konstan, J.A. and Riedl, J., Analysis of recommendation algorithms for e-commerce. 2nd ACM conference onElectronic commerce, ACM Press, Minneapolis, Minnesota, UnitedStates, 2000, pp.158-167.Schafer, J.B., Konstan, J.A. and Riedl, J., E-Commerce Recommendation Applications, Journal of Data Mining andKnowledgeDiscovery, 5 (2000) 115-152.
20.B. Mobasher, R. Cooley, and J. Srivastava, “AutomaticPersonalization Based on Web Usage Mining”. Communicationsof the ACM, Vol.43(8) (2000) 142-151.
21.B. Mobasher, H. Dai, T. Luo, and M. Nakagawa.“Effective Personalization Based on Association RuleDiscovery from Web Usage Data”, In Proc. of ACMWorkshop on Web Information and Data Management(WIDM) (2001) 103-112.
22.Baldwin, R., & Cave, M. (1999). Understanding Regulation: Theory, Strategy and Practice. Oxford: Oxford University Press.
23.Chaffey, D., Mayer, R., Johnston, K., & Ellis-Chadwick, F. (2003). Internet Marketing (Second ed.). Harlow: Pearson Education.
24.Consumers International (2001). Should I buy? Shopping on line 2001: An international comparative study of electronic commerce. London: Consumers International.
25.Econfidence Forum (2001). Principles for e-commerce codes of conduct http://econfidence.jrc.it/default/show.gx?Object.object_id=EC_FORUM0000000000000088
26.European Union (2001). Green Paper on European Union Consumer Protection, COM(2001)531 final, 2nd October 2001.
27.European Union (2000). Directive 2000/31/EC of the European Parliament and the Council of 8 June 2000. Official Journal of the European Communities 17.7.2000 L178/1 – L178/16.
28.Jalava, J. (2003). From Norms to Trust. European Journal of Social Theory, 6(2), 173-190.
29.D. Smith, S. Menon, K. Sivakumar, Online peer and editorial recommendations, trust, and choice in virtual markets, Journal of Interactive Marketing 19, 2005, pp. 15–37
30.A. Wang, The effects of expert and consumer endorsements on audience response, Journal of Advertising Research 2005, pp. 402–412.
31.Wikipedia, Discriminant validity, Retrieved September 18, 2007, from http://en.wikipedia.org/wiki/Discriminant_validity, 2007
32.M. K. O. Lee and E. L. Turban, “A Trust Model for Consumer Internet Shopping,” International Journal of Electronic Commerce, 6, pp. 75-91, 2001.
33.A. Jøsang, R. Ismail, and C. Boyd, “A Survey of Trust and Reputation Systems for Online Service Provision”, Decision Support Systems, 43(2), pp. 618-644, 2007. D. Koehn, “The Nature of and Conditions for Online Trust”,Journal of Business Ethics, 43, pp. 3-19, 2003.
34.P. McCole and A. Palmer, “Transaction Frequency and Trust in Internet Buying Behaviour”, Irish Marketing Review, 15(2), pp. 35-50, 2002.
35.D. Gefen, E. Karahanna, and D. W. Straub, “Trust and TAM in Online Shopping: An Integrated Model”, MIS Quarterly, 27(1), pp. 51-90, 2003.
36.M. Warkentin, D. Gefen, P. A. Pavlou, and G. M. Rose, “Encouraging Citizen Adoption of e-Government by Building Trust”, Electronic Markets, 12(3), pp. 157-162, 2002.
37.S. L. Jarvenpaa, N. Tractinsky, and M. Vitale, “Consumer Trust in an Internet Store”, Information Technology and Management, 1, pp. 45-71, 2000.
38.S. J. Yoon, “The Antecedents and Consequences of Trust in Online Purchase Decisions”, Journal of Interactive Marketing, 16(2), pp. 47-63, 2002.
39.S. C. Chen and G. S. Dhillon, “Interpreting Dimensions of Consumer Trust in E-Commerce”, Information Technology and Management, 4, pp. 303-138, 2003
40.Flesca, S., Greco, S., Tagarelli, A. and Zumpano, E., "Non-invasive support for personalized navigation of Websites," presented at 8th International Database Engineering and Applications Symposium (IDEAS'04), Coimbra, Portugal, 2004.
41.Rodriguez, M. A. and Egenhofer, M. J., "Determining semantic similarity among entity classes from different ontologies," IEEE Transactions on Knowledge and Data Engineering, vol. 15, pp. 442- 456, 2003.
42.Cho, Y. H. and Kim, J. K., "Application of web usage mining and product taxonomy to collaborative recommendations in e-commerce," Expert Systems with Applications, vol. 26, pp. 233-246, 2004.
43.McKnight, D. H., V. Choudhury and C. Kacmar (2002), “Developing and Validating Trust Measures for ECommerce: An Integrative Typology,” Information Systems Research, 13 (3), pp. 334-359.
44.O’Hara, K. (2006) “Trust, Information and Risk,” Presentation at the LSE, IAM.
45.Sanders, T. (2005) “E-Associations: Can Technology Reverse Declining Civic Engagement?” Taubman Center Working Paper Series, Kennedy School at Harvard University. pp.1- 2.
46.Saunders, C. Wu, Y., Yuzhu, L., Weisfeld, S. (2004) “Interorganizational Trust in B2B Relationships,” ACM International Conference Proceeding Series, Vol. 60. pp. 272-279.
47.Parasuraman, R. & Miller, C. A. (2004) “Trust and Etiquette in High-Critically Automated Systems,” Communications of the Association for Computing Machinery, 47(4), pp. 51-55.
48.How Understanding Trust Benefits E-Commerce KABIR SEHGAL Candidate for MSc Department of Information Systems London School of Economics Petteri REPO, Fredrik NORDQUIST, "Marking and Coding Trust in E-commerce", Marking and Coding Trust in E-commerce,61-69 (2005)
49.Jens Riegelsberger, "Interpersonal Cues and Consumer Trust in E-commerce", Department of Computer Science University College London (2003)
50.Li Niu, Xiao-Wei Y., Cheng-Qi Z., Shi-Chao Z., "Product Hierarchy-based Customer Profilesfro Electronic Commerce Recommemdation, Proceeding of the First International Conference on Machine Learning and Cybernetics, Beijing (2002)
51.Kangning W., Jinghua H.,Shaohong F., "A Survey of E-Commerce Recommender Systems", School of Economics and Management, Tsinghua University, Beijing, (2007)
52.Penelope M., Ioanna M., Spiros S., Athanasios T., "Personalized E-commerce Recommendations", Proceedings of the 2005 IEEE International Conference on e-Business Engineering (ICEBE’05),(2005)
53.Neil Y. Yen, Timothy K. Shih, Louis R. Chao, "Repository and Search Based on Distance Learning Standards", Department of Computer Science and Information Engineering, Tamkang University, (2009)
54.Nick Golovin, Erhard Rahm, "Reinforcement Learning Architecture for Web Recommendations", Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04),(2004)
55.Li-Tung Weng, Yue Xu, Yuefeng Li, "A FRAMEWORK FOR E-COMMERCE ORIENTED RECOMMENDATION SYSTEMS", Centre for Information Technology Innovation Faculty of Information-Technology, (2005)
56.Gediminas Adomavicius and YoungOk Kwon, "New Recommendation Techniques for Multicriteria Rating Systems", 2007 IEEE, p48-55, (2007)
57.Junzhong Ji, Zhiqiang Sha, Chunnian Liu, "Online Recommendation Based on Customer Shopping Model in E-Commerce", Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI’03), (2003)
58.ZHEN-GANG YANG, FEI-QI DENG, "A WEB RECOMMENDATION METHOD BASED ON USER INTEREST MODEL", Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, Dalian,(2006)
59.Tomohiro A., Naoki O., Masateru T., Takeshi K., Akito M., Ken-ichi M., "Recommendation of Software Technologies Based on Collaborative Filtering", Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05), (2005)
60.Dong-Ho Kim, Il Im, Vijayalakshmi Atluri, "A Clickstream-based Collaborative Filtering Recommendation Model for E-Commerce", Proceedings of the Seventh IEEE International Conference on E-Commerce Technology (CEC’05), (2005)
61.Xuetao Guo, Jie Lu, "Recommending Trade Exhibitions by Integrating Semantic Information with Collaborative Filtering", Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05), (2005)
62.Kiku Jones, Lori N.K. Leonard, "Trust in consumer-to-consumer electronic commerce", Information & Management 45, p88–95, (2008)
63.Chih-Chien W., Chun-An C., Jui-Chin J., "The Impact of Knowledge and Trust on E-Consumers’Online Shopping Activities: An Empirical Study", JOURNAL OF COMPUTERS, VOL. 4, NO. 1, (2009)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 98. 李宜曄、林詠能,十三行博物館導覽服務滿意度與重遊意願研究,博物館學季刊22(1)研究論文,2008。
2. 50. 楊政學,農企業研究方法整合應用之探討:由指導服務行銷型農企業實務專題製作談起,農業經濟叢刊(Taiwanese Agricultural Economic Review),9:1,63-96,2003。
3. 49. 林金定、嚴嘉楓、陳美花,質性研究方法:訪談模式與實施步驟分析,身心障礙研究 2005, Vol.3, No.2,2005。
4. 36. 蘇麗瓊、田基武,『新故鄉社區營造計畫』與『社區營造條例草案』的介紹,社區發展季刊 107 期 P5-P22,2004。
5. [8]李秀美,1999,兒童電視素養對暴力訊息解讀的影響 — 一個基模取向的研究,教學科技與媒體,第45期,台北市:中國視聽教育學會出版,pp.3-14。
6. 27. 莊翰華、吳郁萍,『社區總體營造之闡釋』。社區發展季刊,第90期。臺北:內政部、社區發展雜誌社, 170頁,1999。
7. 16. 羅秀華,反轉社區規劃的主導權力-文山經驗,《國立臺灣大學建築與城鄉研究學報》第十二期 民國九十三年十二月 研究報告 第81頁∼108頁,2004。
8. [5]吳岳剛,1999,平面廣告中圖像與產品種類的關係對於記憶的影響,廣告學研究,Vol.13,pp.113-130。
9. [11]林芙美,2006,廣告攝影特性與影像解讀,藝術欣賞,Vol.2,No.2,pp.38-42。
10. [14]林慶利、陳婉瑜,2003,不同行業屬性商店招牌之視覺資訊內容分析--以雲林縣斗六市太平路歷史街區再造計劃為例,商業設計學報,Vol. 7,台中市:台中技術學院商業設計系出版,pp. 423-442。
11. [19]洪嘉永,1999,從語意認知觀點探討產品與色彩聯想之擴散模式,樹德科技學報,第1期,高雄縣:樹德科技大學,pp.135-149。
12. [27]戚栩僊,2003,廣告效果展現:資訊處理與意義解釋二模式之初探,廣告學研究,Vol.20,pp.77-95。
13. [35]陳俊宏、黃雅卿,1996,色彩嗜好調查研究報告,國立雲林技術學院學報,第五卷,第2期,雲林縣:國立雲林技術學院。
14. [37]陳郁佳,2004,由視覺比喻研究廣告設計的認知差異,藝術學報,Vol.75,pp. 143-153。
15. [43]開一心,2003,基模理論與空間意象再現中的屬性認同,華岡外語學報,第10期,pp. 189-214。