跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/18 07:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林雍植
研究生(外文):Yung-chih Lin
論文名稱:銅觸媒成長奈米碳管機制的研究
論文名稱(外文):The Study of CNT Growing Mechanism over Copper Catalysts
指導教授:林建宏林建宏引用關係張仲卿
指導教授(外文):Jarrn-Horng LinChong-Ching Chang
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:機電系統工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:131
中文關鍵詞:銅觸媒奈米碳管催化化學氣相沉積
外文關鍵詞:copper catalystsCarbon nanotubesCatalytic Chemical Vapor Deposition
相關次數:
  • 被引用被引用:1
  • 點閱點閱:446
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用催化化學氣相沉積 (Catalytic Chemical Vapor Deposition, CCVD) 法探討銅觸媒催化成長奈米碳管的行為,並透過SEM、HR-TEM、TGA、Raman 與XRD 等技術來探討其成長機制。我們以銅金屬鹽類作為金屬前驅物,利用含浸法將其分散在多孔性二氧化矽 (SiO2) 擔體上,以稀釋乙烯 (C2H4/He=1/9) 作為碳源在800℃成長奈米碳管 (Carbon nanotubes-CNTs)。從SEM 與HR-TEM 圖可知所成長之碳管屬於多壁奈米碳管 (Multi-walled CNTs-MWNTs),其管徑分佈集中於20-40 nm,這與銅金屬的顆粒分佈有直接相關性。而Raman 光譜分析證明產物為多壁奈米碳管。藉由實驗參數控制可以得到相關的碳管管徑分佈與形貌,我們發現800℃是最佳的成長溫度,更高溫將因銅金屬顆粒的聚集而導致失活,較低溫 (700℃以下) 則無法有效裂解乙烯分子。而銅觸媒在經過氧化還原的前處理也會提高銅觸媒活性,有助於奈米碳管的成長。此外,在不同銅前驅物研究發現[硫酸銅 (CuSO4.5H2O)、醋酸銅 (Cu(CH3COO)2.H2O)、硝酸銅 (Cu(NO3)2.3H2O)],硫酸銅的產率最高為0.6 g-C/g-catalyst.hr。而添加氫氣可使銅觸媒形成還原態的金屬觸媒,亦可抑制碳氫化合物過度的熱裂解及清潔銅觸媒表面的積碳,防止銅觸媒的失活,可以有效地提升多壁奈米碳管產率。
This research uses the CCVD (Catalytic Chemical Vapor Deposition) to explore the behavior of copper catalysts being catalyzed into Carbon nanotubes-CNTs. In addition, its growth mechanism is also explored through technologies like SEM, HR-TEM, TGA, Raman and XRD. We adopted the copper salts as the metal precursor and employed the Wet impregnation method spreading on the bearer of porous SiO2 so as to dilute the C2H4/He=1/9 which would be used as the carbon source for growing into the Carbon nanotubes-CNTs at 800℃. From the diagram of SEM and HR-TEM, we can learn that the majority in the growth for the carbon nanotubes-CNTs belongs to Multi-walled CNTs-MWNTs with its diameter distribution congregated between 20-40 nm; and this can be directly attributed to the particle distribution for copper metal. And Raman spectral analysis proved that the products were mostly Multi-walled CNTs-MWNTs as well. Through controlling the experimental parameters, we can acquire related carbon tube diameter distribution and its shape and form. And we discovered that 800 ℃ had been the optimum growth temperature; higher temperature would render the loss of activity due to copper metal particle coagulation; whereas, lower temperature (below 700℃) would be unable to effectively break free the ethylene molecules. Furthermore, copper catalyst would be able to elevate its catalyst activity by undergoing oxidation and reduction preprocesses which would be conducive to the growth of Carbon nanotubes-CNTs. Other than these, within the findings for different copper precursor researches like [ (CuSO4.5H2O), (Cu(CH3COO)2.H2O) and (Cu(NO3)2.3H2O)], the highest production ratio for CuSO4〃5H2O was 0.6 g-C/g-catalyst.hr. Nonetheless, the added hydrogen can render copper catalyst into formation of the reduction stated metal catalyst, which can also suppress the excessive heat pyrolysis of carbon hydrogen compounds and clean the carbon accumulation deposited on the copper catalyst surface. This way, it could also prevent the copper catalyst from being inactive and suppress the effective elevation for the production ratio of Multi-walled CNTs-MWNTs.
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
符號說明 xiii
一、 緒論 1
1-1 前言 1
1-3 奈米碳管的特性 4
1-3-1 奈米碳管的導電性 4
1-3-2 奈米碳管的機械性質 5
1-3-3 奈米碳管的熱傳導性質 5
1-3-4 奈米碳管的場發射性質 5
1-4 本文研究動機 6
二、 文獻回顧 19
2-1 奈米碳管的製備方法 19
2-1-1 電弧放電法 19
2-1-2 雷射蒸發法 19
2-1-3 化學氣相沉積法 20
2-2 奈米碳管的成長機制 21
2-3 銅觸媒成長奈米碳管的相關文獻 23
三、 實驗方法 41
3-1 實驗材料 41
3-2 實驗步驟 41
3-3 實驗裝置 42
3-4 分析方法 43
3-4-1 掃描式電子顯微鏡 43
3-4-2 穿透式電子顯微鏡 43
3-4-3 X 光粉末繞射儀 43
3-4-4 拉曼光譜儀 44
3-4-5 熱重分析儀 45
四、 結果與討論 53
4-1 碳源的選擇 53
4-2 影響奈米碳管成長的因素 54
4-2-1 溫度效應對成長奈米碳管的影響 54
4-2-2 時間效應對成長奈米碳管的影響 57
4-2-3 銅觸媒載量對成長奈米碳管的影響 58
4-3 銅觸媒不同前處理對奈米碳管成長的影響 60
4-4 CuSO4/SiO2 觸媒對奈米碳管成長的影響 62
4-4-1 不同銅觸媒前驅物成長奈米碳管 62
4-4-2 改變不同基材 63
4-5 氫氣對成長奈米碳管的影響 65
五、 結論 126
參考文獻 127
[1] 朱宏傳、吳德海、徐才祿(2003)。碳納米管。北京機械工業出版社。
[2] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56–58, Nov. 1991
[3] P. Ball, “Roll up for the revolution,” Nature, vol. 414, pp. 142–144, Nov. 2001
[4] R. Bacon, “Growth, structur, and properties of graphite whiskers,” J. Appl. Phys., vol. 31, pp. 283–290, Feb. 1960
[5] P. G. Wiles and J. Abrahamson, “Carbon fibre layers on arc electrodes-I: Their properties and cool-down behaviour,” Carbon, vol. 16, pp. 341–349, 1978
[6] A. Oberlin and M. Endo, “Filamentous growth of carbon through benzene decomposition,” J. Cryst. Growth, vol. 32, pp. 335–349, Sep. 1976
[7] A. Javey, “The 2008 Kavli Prize in nanoscience: carbon nanotubes,” Nano Focus, vol. 2, pp. 1329–1335, Jul. 2008
[8] H. W. Kroto et al., “C60:buckminsterfullerene,” Nature, vol. 318, pp. 162–163, Nov. 1985
[9] R. E. Smalley, “Discovering the fullerenes,” Revi. Mod. Phys., vol. 69, pp. 723–730, Jul. 1997
[10] W. Krätschmer et al., “Solid C60 a new form of carbon,” Nature, vol. 347, pp. 354–358, Sep. 1990
[11] S. Iijima, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, pp. 603–605, Jun. 1993
[12] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol.363, pp. 603–605, Jun. 1993
[13] D.S. Bethune et al., “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, vol. 363, pp. 605–607, Jun. 1993
[14] T. W. Odom et al., “Structure and electronic properties of carbon nanotubes,” J. Phys. Chem. B, vol. 104, pp. 2794–2809, Feb. 2000
[15] Y. Saito et al., “Growth conditions of double-walled carbon nanotubes in arc discharge,”J. Phys. Chem. B, vol. 107, pp. 931–934, Jan. 2003
[16] J. H. Lin et al., “Self-assembling of multi-walled carbon nanotubes on a porous carbon surface by catalyst-free chemical vapor deposition,” Carbon, vol. 46, pp. 1619–1623, Oct. 2008
[17] A. Charlier et al., “Classification for double-walled carbon nanotubes,” Carbon, vol. 37, pp. 1779–1783, Feb. 1999
[18] L. Chico et al., “Pure carbon nanoscale devices: nanotube heterojunctions,” Phys. Rev. Lett., vol. 76, pp. 971–974, Feb. 1996
[19] S. Iijima, “Growth of carbon nanotubes,” Mater. Sci. Eng. B, vol. 19, pp. 172–180, Apr. 1993
[20] R. H. Baughman et al., “Carbon nanotubes-the route toward applications,” Science, vol. 297, pp. 787–792, Aug. 2002
[21] S. N. Kim et al., “Carbon nanotubes for electronic and electrochemical detection of biomolecules,” Adv. Mater., vol. 19, pp. 3214–3228, Sep. 2007
[22] A. Thess et al.,“Crystalline ropes of metallic carbon nanotubes,” Science, vol. 273, pp. 483–487, Jul. 1996
[23] S. Frank et al., “Carbon nanotube quantum resistors,” Science, vol. 280, pp. 1744–1746, Jun. 1998
[24] M. R. Falvo et al.,“Bending and buckling of carbon nanotubes under large strain,” Nature, vol. 389, pp. 582–584, Jan. 1997
[25] M. M. J. Treacy et al., “Exceptionally High Young''s Modulus Observed for Individual Carbon nanotubes,” Nature, vol. 381, pp. 678–680, Jun. 1996
[26] J. Hone et al., “Thermal conductivity of single-walled carbon nanotubes,” Synth. Met., vol. 103, pp. 2498–2499, Mar. 1999
[27] S. Berber et al., “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett., vol. 84, pp. 4613–4616, May. 2000
[28] A. G. Rinzler et al., “Unraveling nanotubes: field emission from an atomic wire,” Science, vol. 269, pp. 1550–1553, Sep. 1995
[29] W. A. de Heer et al., “A carbon nanotube field-emission electron source,” Science, vol. 270, pp. 1179–1180, Nov. 1995
[30] C. P. Deck and K. Vecchio, “Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams,” Carbon, vol. 44, pp. 267–275, Feb. 2006
[31] V. Ivanov et al., “The study of carbon nanotubules produced by catalytic method,” Chem. Phys. Lett., vol. 223, pp. 329–335, Jun. 1994
[32] J. H. Lin et al., “Synthesis of MWCNTs on CuSO4/Al2O3 using chemical vapor deposition from methane,” Carbon, vol. 45, pp. 223–225, Jan. 2007
[33] D. Takagi et al., “Single-walled carbon nanotube growth from highly activated metal nanoparticles,” Nano Lett., vol. 6, pp. 2642–2645, Nov. 2006
[34] D. Takagi et al., “Mechanism of gold-catalyzed carbon material growth,” Nano Lett., vol. 8, pp. 832–835, Feb. 2008
[35] R. E. Smalley et al., “Growth and sintering of fullerene nanotubes,” Science, vol. 266, pp. 1218–1222, Nov. 1994
[36] X. K. Wang et al., “Carbon nanotubes synthesized in a hydrogen arc discharge,” Appl. Phys. Lett., vol. 66, pp. 2430–2432, May. 1995
[37] Y. Saito et al., “Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge,” J. Appl. Phys., vol. 80, pp. 3062–3067, Sep. 1996
[38] T. Guo et al., “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett., vol. 243, pp. 49–54, Sep. 1995
[39] F. Kokai et al., “Synthesis of single-wall carbon nanotubes by millisecondpulsed CO2 laser vaporization at room temperature,” Chem. Phys. Lett., vol. 332, pp. 449–454, Dec. 2000
[40] A.C. Dillon et al., “Controlling single-wall nanotube diameters with variation in laser pulse power,” Chem. Phys. Lett., vol. 316, pp. 13–18, Jan. 2000
[41] E. Flahaut et al., “Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions,” Chem. Phys. Lett., vol. 300, pp. 236–242, Jan. 1999
[42] S. Hofmann et al., “Growth conditions of double-walled carbon nanotubes in arc discharge,” Appl. Phys. Lett., vol. 83, pp. 4661–4663, Dec. 2003
[43] L. J. E. Hofer et al., “structure of the carbon deposited from carbon monoxide on iron, cobalt and nickel,” J. Phys. Chem., vol. 59, pp. 1153–1155, Nov. 1955
[44] M. Jose-Yacaman et al., “Catalytic growth of carbon microtubules with fullerene structure,” Appl. Phys. Lett., vol. 62, pp. 657–659, Feb. 1993
[45] M. K.S. Li et al., “Synthesis of exfoliated CNT-metal-clay nanocomposite by chemical vapor deposition,” Sep. Purif. Technol., vol. 67, pp. 238–243, Jun. 2009
[46] G. Y. Zhang and E. G. Wang, “Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation,” Appl. Phys. Lett., vol. 82, pp. 1926–1928, Mar. 2003
[47] E.F. Kukovitsky et al., “VLS-growth of carbon nanotubes from the vapor,” Chem. Phys. Lett., vol. 317, pp. 65–70, Jan. 2000
[48] R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanish of single crystal growth,” Appl. Phys. Lett., vol. 4, pp. 89–90, Mar. 1964
[49] R. T. K. Baker, “Catalytic growth of carbon filaments,” Carbon, vol. 27, pp. 315-323, 1989.
[50] A. Gorbunova et al., “Solid-liquid-solid growth mechanism of single-wall carbon nanotubes,” Carbon, vol. 40, pp. 113–118, Jan. 2003
[51] H. Kataura et al., “Diameter control of single-walled carbon nanotubes,” Carbon, vol. 38, pp. 1691–1697, Nov. 2000
[52] S. B. Sinnott et al., “Model of carbon nanotube growth through chemical vapor deposition,” Chem. Phys. Lett., vol. 315, pp. 25–30, Dec. 1999
[53] A. A. Setlur et al., “A method for synthesizing large quantities of carbon nanotubes and encapsulated copper nanowires,” Appl. Phys. Lett., vol. 69, pp. 345–347, Jul. 1996
[54] N.M. Rodriguez, “A review of catalytically grown carbon nanofibers,” J. Mater. Res., vol. 8, pp. 3233–3250, Dec. 1993
[55] T. Mizutani, “Residual strain energy in composites containing particles,” J. Mater. Res., vol. 11, pp. 483–494, Feb. 1996
[56] R. Vander Wal et al., “Substrate–support interactions in metal-catalyzed carbon nanofiber growth,” Carbon, vol. 39, pp. 2277–2289, Jan. 2001
[57] W. Zhou et al., “Copper catalyzing growth of single-walled carbon nanotubes on substrates,” Nano Lett., vol. 6, pp. 2987–2990, Nov. 2006
[58] X.Y. Tao et al., “Thermal CVD synthesis of carbon nanotubes filled with single-crystalline Cu nanoneedles at tips,” Diamond Relat. Mater., vol. 15, pp. 1271–1275, Sep. 2006
[59] McKee G. S. B. and Vecchio K. S., “Thermogravimetric Analysis of Synthesis Variation Effects on CVD Generated Multiwalled Carbon Nanotubes,” J. Phys. Chem. B, vol. 110,
pp. 1179–1186, Jan. 2006
[60] S. H. Durbach et al., “Synthesis of branched carbon nanotubes using copper catalysts in a hydrogen-filled DC arc-discharger,” Carbon, vol. 47, pp. 635–644, Mar. 2009
[61] Z. Li et al., “Copper/molybdenum nanocomposite particles as catalysts for the growth of bamboo-structured carbon nanotubes,” J. Phys. Chem. C, vol. 112, pp. 12201–12206, Jul. 2008
[62] B. Gan et al., “Y-junction carbon nanotubes grown by in situ evaporated copper catalyst,” Chem. Phys. Lett., vol. 333, pp. 23–28, Jan. 2001
[63] J. L. Carter et al., “Catalysis over supported metals. v. the effect of crystallite size on the catalytic activity of nickel,” J. Phys. Chem., vol. 70, pp. 2257–2263, Jul. 1966
[64] L. C. A. van den Oetelaar et al., “A surface science study of model catalysts. 2. metalsupport interactions in Cu/SiO2 model catalysts,” J. Phys. Chem. B, vol. 102, pp. 9541–9549, Jan. 1998
[65] T. A. R. Peter and B. W. William, “The role of free radical condensates in the production of carbon nanotubes during the hydrocarbon CVD process,” Carbon, vol. 44, pp. 1653–1660, Mar. 2006
[66] www.chem.ucl.ac.uk
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 12. 汪受寬,〈獅子與獅子舞〉,《歷史月刊》(2002‧4)號。
2. 吳政達(2006)。少子化趨勢下國民中小學學校經濟規模政策之研究。教育政策論壇,9(1),23-45。
3. 顏朱吟(2004)。大學整併政策之組織理論應用及問題探討。學校行政雙月刊,32,56-63。
4. 15. 林玉龍,〈淺談舞獅〉,《北縣國教輔導》第四期(1998‧4)。
5. 何金針(2003)。教育市場與教育政策。學校行政雙月刊,28,29-44。
6. 13. 周榮杰,〈台灣民間信仰中的厭勝物〉,《高雄文獻》28、29期合刊(1987‧4)。
7. 11. 李慧珍,〈廷威醒獅劇團的春川經驗〉,《傳藝》77期(2008‧8)。
8. 李坤崇(2006)。高中職發展與轉型之優、劣勢與具體行為。教育研究月刊,149,70-93。
9. 9. 吳騰達,〈廟會與民俗藝陣〉,《傳藝》79期(2008‧12)。
10. 8. 吳騰達,〈台灣舞獅獅頭造形藝術〉,《傳統藝術》37期(2003‧12)。
11. 李坤崇(2006)。高中職發展與轉型情境分析。教育研究月刊,149,15-32。
12. 曾瑞譙、張文軫、郭姿秀(2009)。少子化對技專校院經營管理壓力與應策略之分析。教育研究與發展期刊,5(3),175-206。
13. 37. 羅明葵,〈社區民俗體育舞獅隻探討─以富寮里金獅陣為例〉,《大專體育》第61期(2002‧8)。
14. 35. 謝貴文,〈高雄市的保生大帝信仰〉,《高市文獻》第二十卷第一期(2007‧3)。
15. 33. 鄧文龍,〈讓遺憾不再─談歷史文物的保存與利用〉,《高雄市立歷史博物館館刊》第四期(2006‧12)。