跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳仁家
研究生(外文):Jen-Chia Wu
論文名稱:聚胜肽薄膜的合成及應用
論文名稱(外文):Synthesis and Applications of Surface-Grafted Polypeptides
指導教授:陳家俊陳家俊引用關係
指導教授(外文):Chia-Chun Chen
學位類別:博士
校院名稱:國立臺灣師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:64
中文關鍵詞:聚胜肽奈米材料二極體
外文關鍵詞:polypeptidenanomaterialsdiode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文中,我們利用了 (Surface-initiated vapor deposition-polymerization (SI-VDP)) 此高效率的薄膜成長技術,在矽、石英及金的基板上成功的成長了PCBL、PLL、PBLG及PLGA等聚胜肽薄膜,並用此薄膜來做後續之應用。
首先,我們利用PLL薄膜做為模板來催化tetraethoxysilane的聚合沉積反應,用此仿生反應來形成氧化矽奈米結構。在PLL薄膜的催化下,氧化矽可在常溫、中性的pH值下自發生成。而形成的氧化矽結構和PLL聚胜肽模板膜厚及橫向的微米圖形相當一致。此外,透過調控PLL聚胜肽模板的膜厚及疏密度,還可微調氧化矽奈米結構,令其結構由連續性的薄膜轉變為分離的球狀結構及纖維網狀結構。在利用高溫移除PLL聚胜肽模板後,在穿透式電子顯微鏡(TEM) 下可發現,用此方法可在表面上製造出平均約10奈米的細微通道。我們的方法提供了一個簡單容易且環保的方式,用以形成可調控形、貌厚度與疏密度的氧化矽奈米結構。
其次,我們成功的利用調控聚胜肽的排列及α螺旋與表面的傾斜角,形成在±0.422V下整流效應達約122的分子二極體。在此,我們利用SI-VDP在金的表面成長PBLG 聚胜肽薄膜並利用solvent-quenching的方式(先以chloroform浸泡薄膜讓PBLG分子鍊伸展到溶劑中,然後再將薄膜轉移到互溶性較差的溶劑acetone中使造成相分離)使聚胜肽分子的α螺旋一致性的向上垂直於基板表面。利用AFM原子力顯微鏡導電模式測量得之 I-V曲線,顯示出良好排列且垂直於表面的聚胜肽結構其整流效應足以用於在二極體的應用之上。
In this thesis, we use the effective synthetic approach (Surface-initiated vapor deposition-polymerization (SI-VDP)) to fabricate surface-grafted polypeptides on silicon, quartz, and Au surface for further applications.
Firstly, biomimetic porous silica films have been synthesized by polycondensation of tetraethoxysilane on a soft template formed by “end-tethered poly(L-lysine)” (“t-PLL”) monolayer with a brush-like configuration. The silica formation occurs spontaneously inside the t-PLL at neutral pH and room temperature. The growth of silica fully conforms to the original t-PLL film thicknesses and lateral micro-patterns, regardless of prolonged reaction time and monomer concentration. The morphologies of biomimetic silica are changed from continuous pleated, discrete spherical, to fibrous forms according to the initial t-PLL chain length and surface density. After burning off the t-PLL template, TEM images show the creation of nano-channel arrays in silica with average diameter of 10 nm. Overall, our approach has provided a straightforward and environmentally friendly route to directly generate silica films with controllable morphology, thickness and porosity.
Secondly, Polypeptide based molecular diode with high rectification ratio (~ 122 at ±0.422V) is formed by controlling molecular order and orientation. A film of tethered poly(γ-benzyl-L-glutamate) (PBLG) with high degree of molecular orientation was formed by solvent pair (good/bad) treatment. I-V characterization of the well aligned polypeptides showed that the rectification ratio of PBLG was sufficiently large for potential diode and transistor applications.
Abstract 1
Chapter1. Introduction 3
1-1. Secondary Structures of Polypeptide 3
1-1-1. -Helical structure 4
1-1-2. -Sheet 5
1-2. Synthesis of Polypeptides 6
1-3. The Controlling of Molecular Order 7
1-4. Biomimetic Synthesis of Silica Nanostructure 8
1-5. The Electric Properties of α-Helical-Polypeptide Brushes 12
Chapter2. Experimental section 13
2-1. Synthesis of Silica Nanostructure 13
2-1-1. Cleaning of Substrates 13
2-1-2. Silanization of the Substrates with Various Amine Densities 13
2-1-3. Synthesis of t-PLL Brushes 14
2-1-4. Surface Grafted Polypeptide-Templated Synthesis of Silica 15
2-1-5. Calcination of Surface Silica 16
2-1-6. Instrumentations 16
2-2. Synthesis of Well-Aligned PBLG 19
2-2-1. Preparation of Substrates 19
2-2-2. Preparation of Metal Coated Substrates 19
2-2-3. Preparation of Self-Assembled Monolayers 19
2-2-4. Synthesis of Surface-Grafted Polymer Brushes 20
2-2-5. Changing of The Molecular Orientation of t-PBLG Films 20
2-2-6. Preparation of Spin Coated PBLG Film 20
2-2-7. Molecular Orientation Measurements 21
2-2-8. Molecular Structure Imaging 21
2-2-9. Electric Behavior Analysis 21
2-2-10. Calculation of Average Tilt Angles of PBLG Brushes by ER-FTIR 21
Chapter3. Results and Discussions 23
3-1. Biomimetic Synthesis of Silica Films Directed by Polypeptide Brushes 23
3-1-1. In-Situ Synthesis of Silica Nanostructures at Solid Surfaces 23
3-1-2. Molecular Chain Mobility Studied by CD 26
3-1-3.Silica Growth Monitored by in-situ Ellipsometry 26
3-1-4. Patterned Silica films Formation 28
3-1-5. Binary Silanes Treated Surface 29
3-1-6. The Influences of the Grafting Density and Molecular Weight of t-PLL on Silicification 30
3-1-7. Conclusions 32
3-2. Controlled Growth of Aligned α-Helical-Polypeptide Brushes for Tunable Electrical Conductivity 33
3-2-1. Controlled growth of Polypeptide Films 33
3-2-2. Characterization of Molecular Order by ER-FTIR 34
3-2-3. Electric Behavior Analysis by C-AFM 34
3-2-4. Morphological Dependence of the Rectification Ability 36
3-2-5. Data Analysis and Current density Calculation 36
3-2-6. Electric Behavior Measurement by 4-Probe 37
3-2-7. Conclusions 38
Chapter4. Figures and Captions
Figure 1. General structure of polypeptides 4
Figure 2. Schematic diagram of the secondary structure (a) -helix and (b) -sheet of polypeptide 4
Figure 3. (a) dipole on each peptide bond. (b) The accumulation of small dipoles along the helical backbone to create a net macrodipoe 5
Figure 4. Controlling of molecular order by (a) electric field; (b) solvent swelling; (c) cross-linking-induced; and (d) solvent-quenching approach 8
Figure 5. Schematic illustration of the hypothesized process of the biomimetic silicification 40
Figure 6. FTIR spectrum of a t-PLL films on silicon wafer 41
Figure 7. CD spectra of t-PLL film and t-PLL/silica film 42
Figure 8.Thickness and refractive index (in water) in the course of silicification 43
Figure 9. SEM and (b) TEMimages of the cross-section of the silica film 44
Figure 10. SEM images of the micropatterned films 45
Figure 11. AFM images of the micropatterned films 46.
Figure 12. Schematic illustration of the surface modification processes 47
Figure 13. Water contact angles and thickness measurements as a function of time for different amine density surfaces 48.
Figure 14. The morphologies of silica synthesized with different densities of t-PLL films on the surface 49
Figure 15. Schematic illustration of molecular structures and experimental setup 50
Figure 16. The morphological analysis of polypeptide films by AFM and SEM 51
Figure 17. Electrical studies of polypeptide films 52
Figure 18. Relationships between the electrical responses and the topography on Sample Qt-PBLG 53
Figure 19. ER-FTIR spectra of the polypeptide films 54
Figure 20. The results of taking first and second derivative of the I-V curve 55
Figure 21. ER-FTIR spectra of the Qt-PBLG film on the aluminum substrate 56
Figure 22. Current-voltage (I-V) characteristics 57
Figure 23. Current-voltage (I-V) characteristics of Q t-PBLG film at room temperature 58
Chapter5. References 59
(1) Zimm, B. H.; Rice, S. A. Mol Phys 1960, 3, 391.
(2) Karasz, F. E.; Oreilly, J. M.; Bair, H. E. Nature 1964, 202, 693.
(3) Epand, R. F.; Scheraga, H. A. Biopolymers 1968, 6, 1551.
(4) Puett, D.; Ciferri, A.; Bianchi, E.; Hermans, J. J. Phys. Chem. 1967, 71, 4126.
(5) Ponomarenko, E. A.; Waddon, A. J.; Bakeev, K. N.; Tirrell, D. A.; MacKnight, W. J. Macromolecules 1996, 29, 4340.
(6) Pieroni, O.; Fissi, A.; Angelini, N.; Lenci, F. Acc. Chem. Res. 2001, 34, 9.
(7) Lee, A. T.; McHugh, A. J. Biopolymers 1999, 50, 589.
(8) Walton, A. G. Polypeptides and Protein Structure; Elsevier North Holland: New York, 1981.
(9) Wada, A. Adv. Biophys. 1976, 9, 1.
(10) Wada, A. J Chem Phys 1958, 29, 674.
(11) Wada, A. J Chem Phys 1959, 31, 495.
(12) Wada, A. J Chem Phys 1959, 30, 328.
(13) Chang, Y. C.; Frank, C. W.; Forstmann, G. G.; Johannsmann, D. J. Chem. Phys. 1999, 111, 6136.
(14) Takenaka, T.; Yamasaki, K. J. Colloid Interface Sci. 1980, 78, 37.
(15) Jones, R.; Tredgold, R. H. J Phys D Appl Phys 1988, 21, 449.
(16) Decher, G. Science 1997, 277, 1232.
(17) Chang, Y. C.; Frank, C. W. Langmuir 1998, 14, 326.
(18) Wang, Y.; Chang, Y. C. Langmuir 2002, 18, 9859.
(19) Worley, C. G.; Linton, R. W.; Samulski, E. T. Langmuir 1995, 11, 3805.
(20) Tokarski, Z.; Natarajan, L. V.; Epling, B. L.; Cooper, T. M.; Hussong, K. L.; Grinstead, T. M.; Adams, W. W. Chem. Mater. 1994, 6, 2063.
(21) Duda, G.; Wegner, G. Makromol Chem-Rapid 1988, 9, 495.
(22) Wieringa, R. H.; Siesling, E. A.; Werkman, P. J.; Angerman, H. J.; Vorenkamp, E. J.; Schouten, A. J. Langmuir 2001, 17, 6485.
(23) Luijten, J.; Groeneveld, D. Y.; Nijboer, G. W.; Vorenkamp, E. J.; Schouten, A. J. Langmuir 2007, 23, 8163.
(24) Wang, Y.; Chang, Y. C. J. Am. Chem. Soc. 2003, 125, 6376.
(25) Brinker, C. J.; Scherer, G. W. In Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press, San Diego: 1990.
(26) Zhao, D.; Yang, P.; Melosh, N.; Feng, J.; Chmelka, B. F.; Stucky, G. D. Advanced Materials 1998, 10, 1380.
(27) Iler, R. K. In The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry; Wiley, New York: 1979.
(28) Lu, Y.; Ganguli, R.; Drewien, C. A.; Anderson, M. T.; Brinker, C. J.; Gong, W.; Guo, Y.; Soyez, H.; Dunn, B.; Huang, M. H.; Zink, J. I. Nature 1997, 389, 364.
(29) Stober, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62.
(30) Carole, C. P.; Tracey, K.-T. J. Biol. Inorg. Chem. 2000, V5, 537.
(31) Mann, S.; Webb, J.; Williams, R. J. P. E. Biomineralization: Chemical and Biochemical perspectives; VCH, Weinheim, Germany,, 1989.
(32) Siddharth, V. P.; Niloy, M.; Stephen, J. C. J. Inorg. Organomet. Polymer. 2001, V11, 193.
(33) Coradin, T.; Durupthy, O.; Livage, J. Langmuir 2002, 18, 2331.
(34) Cha, J. N.; Stucky, G. D.; Morse, D. E.; Deming, T. J. Nature 2000, 403, 289.
(35) Hawkins, K. M.; Wang, S. S. S.; Ford, D. M.; Shantz, D. F. J. Am. Chem. Soc. 2004, 126, 9112.
(36) Patwardhan, S. V.; Maheshwari, R.; Mukherjee, N.; Kiick, K. L.; Clarson, S. J. Biomacromolecules 2006, 7, 491.
(37) Patwardhan, S. V.; Mukherjee, N.; Steinitz-Kannan, M.; Clarson, S. J. Chem.Comm. 2003, 1122.
(38) Rodriguez, F.; Glawe, D. D.; Naik, R. R.; Hallinan, K. P.; Stone, M. O. Biomacromolecules 2004, 5, 261.
(39) Glawe, D. D.; Rodriguez, F.; Stone, M. O.; Naik, R. R. Langmuir 2005, 21, 717.
(40) Brott, L. L.; Naik, R. R.; Pikas, D. J.; Kirkpatrick, S. M.; Tomlin, D. W.; Whitlock, P. W.; Clarson, S. J.; Stone, M. O. Nature 2001, 413, 291.
(41) Coffman, E. A.; Melechko, A. V.; Allison, D. P.; Simpson, M. L.; Doktycz, M. J. Langmuir 2004, 20, 8431.
(42) Kim, D. J.; Lee, K. B.; Lee, T. G.; Shon, H. K.; Kim, W. J.; Paik, H. J.; Choi, I. S. Small 2005, 1, 992.
(43) Denis, F. A.; Hanarp, P.; Sutherland, D. S.; Dufrene, Y. F. Langmuir 2004, 20, 9335.
(44) Nakanishi, T.; Masuda, Y.; Koumoto, K. Chem. Mater. 2004, 16, 3484.
(45) Seo, E. K.; Lee, J. W.; Sung-Suh, H. M.; Sung, M. M. Chem. Mater. 2004, 16, 1878.
(46) Tokuhisa, H.; Hammond, P. T. Langmuir 2004, 20, 1436.
(47) Kisailus, D.; Truong, Q.; Amemiya, Y.; Weaver, J. C.; Morse, D. E. PNAS 2006, 103, 5652.
(48) Tugulu, S.; Harms, M.; Fricke, M.; Volkmer, D.; Klok, H. A. Angewandte Chemie-International Edition 2006, 45, 7458.
(49) Yang, P.; Yang, M.; Zou, S.; Xie, J.; Yang, W. J. Am. Chem. Soc. 2007.
(50) Patwardhan, S. V.; Clarson, S. J.; Perry, C. C. Chem. Comm. 2005, 1113.
(51) Wang, Y.; Chang, Y. C. Macromolecules 2003, 36, 6511.
(52) Wang, Y.; Chang, Y. C. Adv. Mater. 2003, 15, 290.
(53) Wasielewski, M. R. Chem. Rev. 1992, 92, 435.
(54) Page, C. C.; Moser, C. C.; Chen, X.; Dutton, P. L. Nature 1999, 402, 47.
(55) Hol, W. G. J.; van Duijnen, P. T.; Berendsen, H. J. C. Nature 1978, 273, 443.
(56) Galoppini, E.; Fox, M. A. J. Am. Chem. Soc. 1996, 118, 2299.
(57) Morita, T.; Kimura, S.; Kobayashi, S.; Imanishi, Y. J. Am. Chem. Soc. 2000, 122, 2850.
(58) Yasutomi, S.; Morita, T.; Imanishi, Y.; Kimura, S. Science 2004, 304, 1944.
(59) Watanabe, J.; Morita, T.; Kimura, S. J. Phys. Chem. B 2005, 109, 14416.
(60) Chen, F.; Li, X.; Hihath, J.; Huang, Z.; Tao, N. J. Am. Chem. Soc. 2006, 128, 15874.
(61) Sisido, M.; Hoshino, S.; Kusano, H.; Kuragaki, M.; Makino, M.; Sasaki, H.; Smith, T. A.; Ghiggino, K. P. J. Phys. Chem. B 2001, 105, 10407.
(62) Petrov, E. G.; Shevchenko, Y. V.; Teslenko, V. I.; May, V. J. Chem. Phys. 2001, 115, 7107.
(63) Morita, T.; Kimura, S. J. Am. Chem. Soc. 2003, 125, 8732.
(64) Malak, R. A.; Gao, Z.; Wishart, J. F.; Isied, S. S. J. Am. Chem. Soc. 2004, 126, 13888.
(65) Polo, F.; Antonello, S.; Formaggio, F.; Toniolo, C.; Maran, F. J. Am. Chem. Soc. 2004, 127, 492.
(66) Sek, S.; Swiatek, K.; Misicka, A. J. Phys. Chem. B 2005, 109, 23121.
(67) Saha, S. K.; Su, Y. K.; Lin, C. L.; Jaw, D. W. Nanotechnol. 2004, 15, 66.
(68) Martin, C. R. Chem. Mater. 1996, 8, 1739.
(69) Lee, J. I.; Cho, S. H.; Park, S.-M.; Kim, J. K.; Kim, J. K.; Yu, J.-W.; Kim, Y. C.; Russell, T. P. Nano Lett. 2008, 8, 2315.
(70) Choi, I.; Kim, Y.; Kang, S. K.; Lee, J.; Yi, J. Langmuir 2006, 22, 4885.
(71) Daly, W. H.; Poche, D. Tetrahedron Lett 1988, 29, 5859.
(72) Dorman, L. C.; Shiang, W. R.; Meyers, P. A. Synthetic Commun 1992, 22, 3257.
(73) Treguer, P.; Nelson, D. M.; Van Bennekom, A. J.; DeMaster, D. J.; Leynaert, A.; Queguiner, B. Science 1995, 268, 375.
(74) Wang, Y.; Chang, Y. C. Macromolecules 2003, 36, 6503.
(75) Duran, H.; Ogura, K.; Nakao, K.; Vianna, S. D. B.; Usui, H.; Advincula, R. C.; Knoll, W. Langmuir 2009, 25, 10711.
(76) Enriquez, E. P.; Jin, M. Y.; Jarnagin, R. C.; Samulski, E. T. Mater. Res. Soc. Symp. Proc. 1992, 255, 423.
(77) Tsuboi, M. J. Polym. Sci. 1962, 59, 139.
(78) Lee, N. H.; Frank, C. W. Langmuir 2003, 19, 1295.
(79) Frohlich, F. Terra Nova 1989, 1, 267.
(80) Parkinson, J.; Gordon, R. Trends in Biotech. 1999, 17, 190.
(81) Fleer, G. J.; Cohen Stuart, M. A.; Scheutjens, J. M. H. M.; Cosgrove, T.; Vincent, B. Polymers at Interfaces; Chapman & Hall: London, 1993.
(82) Jones, R. A. L.; Richard, R. W. Polymers at Surfaces and Interfaces; Cambridge University Press: Cambridge, 1999.
(83) Advincula, R. C.; Brittain, W. J.; Caster, K. C.; Ruhe, J. Polymer Brushes: synthesis, characterization, applications; Weinheim: Wiley-VCH, 2004.
(84) Pender, M. J.; Sowards, L. A.; Hartgerink, J. D.; Stone, M. O.; Naik, R. R. Nano Lett. 2006, 6, 40.
(85) Sugimura, H.; Hozumi, A.; Kameyama, T.; Takai, O. Adv. Mater. 2001, 13, 667.
(86) Chang, Y. C.; Frank, C. W. Organic Thin Films 1998, 695, 142.
(87) Cusumano, P.; Buttitta, F.; Di Cristofalo, A.; Cal, C. Synth. Met. 2003, 139, 657.
(88) Pal, B.; Sun, J.; Jung, B.; Choi, E.; Andreou, A.; Katz, H. Adv. Mater. 2008, 20, 1023.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 18.陳格理. (1997). 圖書館建築與用後評估研究. 第一卷第四期. 大學圖書館.
2. 18.陳格理. (1997). 圖書館建築與用後評估研究. 第一卷第四期. 大學圖書館.
3. 18.陳格理. (1997). 圖書館建築與用後評估研究. 第一卷第四期. 大學圖書館.
4. 16.陳格理. (1993). 大學圖書館建築用後評估研究-以中原大學圖書館為例. 台中市: 捷太出版社.
5. 16.陳格理. (1993). 大學圖書館建築用後評估研究-以中原大學圖書館為例. 台中市: 捷太出版社.
6. 16.陳格理. (1993). 大學圖書館建築用後評估研究-以中原大學圖書館為例. 台中市: 捷太出版社.
7. 12.林衢良,林淑芬. (2007). 撞球參與者參與動機、撞球場館滿意度與行為意圖關係之研究. 輔仁大學體育學刊, 第六期, 頁 70~86.
8. 12.林衢良,林淑芬. (2007). 撞球參與者參與動機、撞球場館滿意度與行為意圖關係之研究. 輔仁大學體育學刊, 第六期, 頁 70~86.
9. 12.林衢良,林淑芬. (2007). 撞球參與者參與動機、撞球場館滿意度與行為意圖關係之研究. 輔仁大學體育學刊, 第六期, 頁 70~86.
10. 10.周宇輝、簡全亮、胡廷鴻. (99年9月15日). 興建大型公共運動設施之決策模式. 國民體育季刊, 三十九 (三).
11. 10.周宇輝、簡全亮、胡廷鴻. (99年9月15日). 興建大型公共運動設施之決策模式. 國民體育季刊, 三十九 (三).
12. 10.周宇輝、簡全亮、胡廷鴻. (99年9月15日). 興建大型公共運動設施之決策模式. 國民體育季刊, 三十九 (三).
13. 8.李志男,湯文慈. (無日期). 中華民國撞球運動協會之組織與發展. 大專體育 (87), 頁 82~87.
14. 8.李志男,湯文慈. (無日期). 中華民國撞球運動協會之組織與發展. 大專體育 (87), 頁 82~87.
15. 8.李志男,湯文慈. (無日期). 中華民國撞球運動協會之組織與發展. 大專體育 (87), 頁 82~87.