(18.210.12.229) 您好!臺灣時間:2021/03/01 05:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳宜鴻
論文名稱:臺灣兩種共域石龍子的水分散失與棲地利用關係之探討
論文名稱(外文):The Relationship of Evaporative Water Loss and Habitat Use in Two Sympatric Taiwan Skinks
指導教授:杜銘章杜銘章引用關係
指導教授(外文):Tu Ming-Chung
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:67
中文關鍵詞:棲地分化微環境水分散失量
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
  物種生存直接受到可利用棲地的影響,而棲地的尺度又可分為大尺度與小尺度。本研究分別以大尺度與小尺度的角度調查臺灣中部麗紋石龍子與印度蜓蜥的分布狀況,並參考過去文獻預測兩個共域物種的微棲地尺度可能會有分化。研究調查的量化資料,顯示了麗紋石龍子傾向利用開闊,且高溫與乾燥的微環境;而印度蜓蜥則傾向利用較遮蔽度高,且低溫潮濕的環境。進一步比較兩個物種幼體、亞成體與雌雄之間水分散失量的差異,結果顯示出兩個物種的幼體保水能力都較差,而對照野外穿越線調查,兩物種的幼體也很少被肉眼記錄到,顯示幼體分布在相對隱蔽的環境中。比較兩個物種,印度蜓蜥的保水能力皆顯著較差,因此傾向分布在閉鬱低溫的潮濕環境。分析兩個物種所利用的微環境資料,顯示出兩個物種的環境溼度有明顯的區隔,但分布溫度仍有某程度的重疊。因此本研究推測,印度蜓蜥可能由於受到水分生理的限制,分布在高濕低溫的微環境;而麗紋石龍子則因為有較好的保水能力,加上本身在溫度生理上對於高溫的偏好,而傾向分布在開闊高溫且乾燥的環境中。但兩個物種的棲地分化是否也同時受到的影響,則需要進一步的操做性實驗來驗證。

We study the habitat use of two sympatric skinks Eumeces elegans and Sphenomorphus indicus in central Taiwan. The environment data in wild was collection at two different scales: large habitat scales and microhabitat scales. The quantified results at these different spatial scales showed these two species select different environment. E. elegans occupied microhabitats with fewer trees, higher ambient temperature, and low humidity; whereas, S. indicus occupied microhabitats with more cover, lower ambient temperature, and high humidity. We also measured the evaporative water loss of these two skinks. Results indicated that the juveniles of both two skinks were loss more water through evaporation than subadults or adults. On the other hand, S. indicus loss more water than E. elegans in either juveniles, subadults and adults. Comparisons of water loss data with wild investigation, we found that the juveniles of
these two skinks were difficult to find in wild. Therefore, juveniles may be restricted to high covered microhabitat. Moreover, microenvironment data predict that S. indicus may be physiologically restricted to moist habitats; and E. elegans were prefer to use dry and high temperature site because its higher thermal requirements. However, the microhabitat partitioning of these two skinks may also a consequence of interaction in each other. Further operational experiment should be test.

摘要 3
前言 5
材料與方法 17
一 實驗動物簡介: 17
二 樣本採集及飼養: 17
三 實驗方法: 18
四 統計分析 22
結果 25
一、大尺度棲地資料 25
二、微棲地資料 26
三、水分散失(EWL)速率 27
討論 31
大尺度棲地資料與前人研究之比較 31
小尺度棲地資料與前人研究之比較 33
實驗室中水分散失(EWL)速率的比較 36
保水能力與微環境的關係 40
環境溫度與溼度對於棲地分化造成的影響 43
棲地分化與競爭或生理限制的關係 46
總結 49
參考文獻 51
表 59
圖 63

朱宏達,2002。南部地區六種石龍子科蜥蜴棲地利用之研究。國立中山大學生物科學系。
呂光洋、賴俊祥,1991。台灣區野生動物資料庫(三)蜥蜴類(I)。行政院農委會。台北。
李培芬、呂光洋、李玉琪、謝佳君、潘彥宏、陳宣汶、潘天祺、丁宗蘇,1998。台灣地區野生動物分布資料庫。行政院農委會。
林俊義、鄭先祐,1990。台灣蜥蜴誌。台灣省立博物館。
Abramsky, Z., Pinshow, B., Brand, S. & Rosenzweig, M. L.. 1985. Geographical ecology of gerbilline rodents in the s and dune habitats of Israel. Journal of Biogeography, 12: 363-372.
Adolph, S. C. & Porter, W. P.. 1993. Temperature, activity, and lizard life-histories. American Naturalist, 142: 273–295.
Andersson, M., Krockenberger, A. & Schwarzkopf, L.. 2010. Experimental manipulation reveals the importance of refuge habitat temperature selected by lizards. Austral Ecology, 35: 294–299.
Angilletta, M. J., Jr., Niewiarowski, P. H. & Navas, C. A.. 2002. The evolution of thermal physiology in ectoterms. Journal of Thermal Biology, 27: 249-268.
Atlas of Israel. 1985. Ministry of Labor, Jerusalem, and Elsevier, Amsterdam.
Baeyens, D. A. & Rountree, R. L.. 1983. A comparative study of evaporative water loss and epidermal permeability in an arboreal snake, Opheodrys aestivus, and a semi-aquatic snake, Nerodia rhombifera. Comparative Biochemistry and Physiology, 76A: 301-304.
Barros, F. C., Carvalho, J. E., Abe, A. S. & Kohlsdorf, T.. 2010. Fight versus flight: the interaction of temperature and body size determines antipredator behaviour in tegu lizards. Animal Behaviour 79: 83–88.
Blanco, J. C. & Gonzãilez, J. L.. 1992. Libro rojo de los vertebrados de Espaaa. ICONA Coleccirn Trcnica, Madrid.
Bradley, S. L. & Bradley, R. A.. 1990. ReptilesHabitat Use and Basking Site Selection in the Water Skink, Eulamprus quoyii. Journal of Herpetology, 24: 235-240.
Brischoux, F. & Bonnet, X.. 2009. Life history of sea kraits in New Caledonia. Zoologia Neocaledonica 7 Memoires du Museum National d’Histoire Naturelle 198: 37-51.
Buffenstein, R. & Louw, G.. 1982. Temperature effects on bioenergetics of growth, assimilaton efficiency and thyroid activity in juvenile varand lizards. Journal of Thermal Biology, 7:197-200.
Bulova, S. J.. 2002. How temperature, humidity, and burrow selection affect evaporative water loss in desert tortoises. Journal of Thermal Biology, 27: 175-189.
Conservation Biology, 50:143–198.
Bustard, H. R.. 1967. Activity cycle and thermoregulation in the Australian gecko Gehyra variegata. Copeia, 1967: 753-758.
Buttemer, W. A.. 1990. Effect of Temperature on Evaporative Water Loss of the Australian Tree Frogs Litoria caerulea and Litoria chloris. Physiological Zoology, Vol. 63: 1043-1057.
Buttemer, W. A. & Thomas, C.. 2003. Influence of temperature on evaporative water loss and cutaneous resistance to water vapour diffusion in the orange-thighed frog (Litoria xanthomera). Australian Journal of Zoology, 51: 111 - 118.
Casey, T. M.. 1981. Behavioral mechanisms of thermoregulation. In: Insect Thermoregulation (ed. B. Heinrich) pp. 79–114. Wiley, NewYork.
Cowles, R. B. & Bogert, C. M.. 1944. A preliminary study of the thermal requirements of desert reptiles. Bulletin of the American Museum of Natural History, 83: 265-296.
Crowley, S. R.. 1987. The effect of desiccation upon the preferred body temperature and activity level of the lizard Sceloporus undulatus. Copeia, 1:25-32.
Dmi’el, R.. 1972. Effect of activity and temperature on metabolism and water loss in snakes. American Journal of Physiology, 223:510-516.
Dmi’el, R.. 1998. Skin resistance to evaporative water loss in viperid snakes: habitat aridity versus taxonomic status. Comparative Biochemistry and Physiology, Part A 121:1–5.
Dml'el, R., Perry, G. and Lazell, J. 1997. Evaporative Water Loss in Nine Insular Populations of the Lizard Anolis cristatellus Group in the British Virgin Islands. Biotropica, 29:111-116.
Du, W. G., Shou, L. & Shen, J.Y.. 2006. Habitat selection in two sympatric Chinese skinks, Eumeces elegans and Sphenomorphus indicus: do thermal preferences matter? Canadian Journal of Zoology, 84: 1300–1306.
Elick, G. E. & Sealander, J. A.. 1972. Comparative Water Loss in Relation to Habitat Selection in Small Colubrid Snakes. American Midland Naturalist, 88: 429-439.
Eynan, M. & Dmi'el, R.. 1993. Skin resistance to water loss in agamid lizards. Oecologia, 95: 290-294 .
Fazey, I., Fischer, J. & Lindenmayer, D. B.. 2005. What do conservation biologists publish? Biological Conservation, 124:63–73.
Finkler, M. S.. 2001. Rates of Water Loss and Estimates of Survival Time under Varying Humidity in Juvenile Snapping Turtles (Chelydra serpentina). Copeia, Vol. 2001: 521-525.
Foley, R. E. & Spotila, J. R.. 1978. Effect of Wind Speed, Air Temperature, Body Size and Vapor Density Difference on Evaporative Water Loss from the Turtle Chrysemys scripta. Copeia, 1978: 627-634.
Gomes, A. S.. 2005. Experimental evaluation of contemporary competition among lizard species endemic to the dunes of the middle São Fracisco River, Bahia.
Grice, K., Sattar, H., Sharratt, M. & Baker, H.. 1971. Skin temperature and transepidermal water loss. Journal of Investigative Dermatology, 57: 108–110.
Hadley, N. F.. 1991. Integumental lipids of plants and animals: comparative function and biochemistry. Journal of Lipid Research, 24: 303-320.
Hardy, L. M.. 1978. Environmental factors and microhabitats in a rain forest of Tabasco, Mexico. Southwestern Naturalist, 23: 683-685.
Harrison, S. & Bruna, E.. 1999. Habitat fragmentation and large-scale conservation: what do we know for sure? Ecography, 22: 225–232.
Heatwole, H. F. & Veron, J. E. N.. 1977. Vital limit and evaporative water loss in lizards (Reptilia, Lacertilia): a critique and new data. Journal of Herpetology, 11: 341–348.
Hernandez-Divers, S. M., Schumacher, J., Stahl, S. & Hernandez-Divers, S. J.. 2005. Comparison of isoflurane and sevoflurane anesthesia after premedication with butorphanolin the green iguana (Iguana iguana). Journal of Zoo and Wildlife Medicine, 36: 169-175.
Hillman, S. S.. 1978. Some effects of dehydration on internal distributions of water and solutes in Xenopus laevis. Comparative Biochemistry and Physiology, 61A: 303-307.
Hillman, S. S.. 1987. Dehydrational effects on cardiovascular and metabolic capacity in two amphibians. Physiological Zoology, 60: 608-613.
Hillman, S. S., Zygmunt, A. & Baustian, M.. 1987. Transcapillary fluid forces during dehydration in two amphibians. Physiological Zoology, 60: 339-345.
Houston, D.. 1984. The role of temperature in microhabitat utilization and activity in Sphenomorphus tenuis. Unpubl. Hons. Thesis. Univ. New England. Armidale, New South Wales. 85 pp.
Huey, R. B.. 1982. Temperature, physiology and ecology of reptiles. In: Biology of the Reptilia,Vol. 12 (eds C. Gans & R. B. Huey) pp. 25–91. John Wiley and Sons, NewYork.
Huey, R. B. & Kingsolver, J. G.. 1989. Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology & Evolution, 4: 131-135.
Huey, R. B. & Kingsolver, J. G.. 1993. Evolution of resistance to high temperature in ectotherms. American Naturalist, 142: 21-46.
Huey, R. B. & Webster, T. P. 1976. Thermal biology of Anolis lizards in a complex fauna: the cristatellus group on Puerto Rico. Ecology, 57: 985-994.
Jeffries, M. J. & Lawton, J. H.. 1984. Enemy free space and the structure of ecological communities. Biologiral Journal of the Linncan Socity, 23: 269-286.
Ji, X., Du, W. G. & Sun, P. Y.. 1996. Body temperature, thermal tolerance and in¯uence of temperature on sprint speed and food assimilation in adult grass lizards, Takydromus septentrionsalis. Journal of Thermal Biology, 21: 155-161.
Ji, X., Lin, L. H., Luo, L. G., Lu, H. L., Gao, J. F. & Han, J.. 2006. Gestation temperature affects sexual phenotype,morphology, locomotor performance, and growth of neonatal brown forest skinks, Sphenomorphus indicus. Biological Journal of the Linnean Society, 88: 453–463.
Ji, X., Sun, P. Y., & Du, W. G. 1997. Selected body temperature, thermal tolerance and food assimilation in a viviparous skink, Sphenomorphus indicus. Netherlands Journal of Zoology, 47: 103-110.
Ji, X., Zheng, X. Z., Xu, Y. G. & Sun, R. M.. 1995. Several aspects of the thermal biology of the skink Eumeces chinensis. Acta Zoologica Sinica, 41: 268-285.
Jones, S. M., Waldschmidt, S. R. & Potvin, M. A.. 1987. An experimental manipulation of food and water: growth and time-space utilization of hatchling lizards (Sceloporus undulatus). Oecologia, 73: 53-59.
Kattan, G. H. & Lillywhite, H. B.. 1989. Humidity acclimation and skin permeability in the lizard Anolis carolinensis. Physiological Zoology, 62: 593–606.
Kingsolver, J. G. & Watt, W. B.. 1983. Thermoregulatory Strategies in Colias Butterflies: Thermal Stress and the Limits to Adaptation in Temporally Varying Environments. The American Naturalist, 121: 32-55.
Kotler, B. P. & Brown, J. S.. 1988. Environmentahl eterogeneity and the coexistence of desert rodents. Annual Review of Ecology, Evolution, and Systematics, 19: 281-307.
Lang, J. W.. 1979. Thermophilis response of the American alligator and the American crocodile to feeding. Copeia, 1979: 48-59.
Langkilde, T. & Shine, R.. 2004. Competing for crevices: interspecific conflict influences retreat-site selection in montane lizards. Oecologia, 140: 684–691.
Laurance, W. F. & Bierregaard, R.O., Jr.. 1997. Tropical forest remnants. Ecology, management, and conservation of fragmented communities. Chicago: The University of Chicago Press. pp. 3-12.
Leal, M. & Fleishman, L. J.. 2002. Evidence for habitat partitioning based on adaptation to environmental light in a pair of sympatric lizard species. Proceedings of the Royal Society B: Biological Sciences, 269: 351-359.
Leal, M., Rodriguez-Robles, J. A. & Losos, J. B.. 1998. An experimental study of interspecific interactions between two Puerto Rican Anolis lizards. Oecologia, 117: 273-278.
Lillywhite, H. B. & Sanmartino, V.. 1993. Permeability and Water Relations of Hygroscopic Skin of the File Snake, Acrochordusg ranulatus. Copeia, 1993: 99-103.
Lillywhite, H. B., Menon, J. G., Menon, G. K., Sheehy, C. M. & Tu, M. C.. 2009. Water exchange and permeability properties of the skin in three species of amphibious sea snakes (Laticauda spp.). The Journal of Experimental Biology, 212: 1921-1929.
Lorenzon, P., Clobert, J., Oppliger, A. & John-Alder, H.. 1999. Effect of water constraint on growth rate, activity and body temperature of yearling common lizard (Lacerta vivipara). Oecologia, 118: 423-430.
Losos, J. B.. 1994. Integrative approaches to evolutionary ecology: Anolis lizards as model systems. Annual Review of Ecology and Systematics, 25: 467- 493.
Losos, J. B. & Spiller, D.A.. 1999. Differential colonization success and asymmetrical interactions between two lizard species. Ecology, 80: 252-258.
Manes, A. & Teitelman, A.. 1977. The availability of solar energy at the Eastern Mediterranean. In its Solar Energy, pp. 100-113.
Mautz, W. J.. 1982. Correlation of Both Respiratory and Cutaneous Water Losses of Lizards with Habitat Aridity. Journal of Comparative Physiology, B 149: 25-30.
McCollin, D.. 1998. Forest edges and habitat selection in birds: a functional approach. Ecography, 21: 247–260.
McNamara, J. M. & Houston, A. I.. 1987. Starvation and predation as factors limiting population size. Ecology, 68: 1515-1519.
Mercurio, K. S., Palmer, A. R. & Lowell, R. B.. 1985. Predator-mediated microhabitat partitioning by two species of visually cryptic, Intertidal Limpets. Ecology, 66: 1417-1425.
Minnich, J. E.. 1982. The use of water. In: Gans C, Pough FH (eds) Biology of the reptilia, 12: 325-395.
Morrison, M. L., Marcot, B.G. & Mannan, R.W.. 1998. Wildlife-Habitat Relationships: Concepts & Applcations. The University of Wisconsin Press, Wisconsin.
Moseley, K.R., Castleberry, S. B. & Ford, W. M.. 2004. Coarse woody debris and pine litter manipulation effects on movement and icrohabitat use of Ambystoma talpoideum in a Pinus taeda stand. Forest Ecology and Management, 191: 387-396.
Nagy, K.A. 1982. Field study of water relations. In: Gans C, Pough FH (eds) Biology of the reptilia, 12: 483-501.
Neilson, K. A.. 2002. Evaporative Water Loss as a Restriction on Habitat Use in Endangered New Zealand Endemic Skinks. Journal of Herpetology, 36: 342-348.
Noss, R., Csuti, B. & Groom, M. J.. 2006. Habitat fragmentation: In Principles of conservation biology. 3rd edn. 211–251. Groom, M.J., Meffe, G.K. & Carroll, C.R. (Eds). Sunderland: Sinauer.
Pacala, S. W. & Roughgarden, J.. 1982. Resource partitioning and interspecific competition in two two-species insularA nolis lizard communities. Science, 217: 141-116.
Pacala, S. W. & Roughgarden, J.. 1985. Population Experiments with the Anolis Lizards of St. Maarten and St. Eustatius. Ecology, 66: 129-141.
Perry, G., Dml'el, R. & Lazell, J. 1999. Evaporative Water Loss in Insular Populations of the Anolis cristatellus Group (Reptilia: Sauria) in the British Virgin Islands II: The Effects of Drought. Biotropica, 31: 337-343.
Pianka, E. R.. 1973. The structure of lizard communities. Annual Review of Ecology, Evolution, and Systematics, 4: 53-74.
Pough, F.H.. 1980. The advantages of ectothermy for tetrapodes. The American Naturalist, 15: 92-112.
Primack, R.B.. 1993. Essentials of Conservation Biology. Sinauer Associates, Sunderland, MA
Rubio, J. L. & Carrascal, L. M.. 1994. Habitat selection and conservation of an endemic spanish lizard Algyroides marchi (Reptilia, Lacertidae). Biological Conservation, 70: 245-250 .
Santos, T., Díaz, J. A., Pérez-Tris, J., Carbonell, R. & Tellería, J. L.. 2007. Habitat quality predicts the distribution of a lizard in fragmented woodlands better than habitat fragmentation. Animal Conservation, 11: 46-56.
Schmidt-Nielsen, B. & Schmidt-Nielsen, k.. 1950. Evaporative Water Loss in Desert Rodents in Their Natural Habitat. Ecology, 31: 75-85.
Schoener, T. W.. 1969. Size patterns in West Indian Anolis lizards. I. Size and species diversity. Systematic Zoology, 18: 386-481.
Schwarzkopf, L. & Alford, R. A. 1996. Desiccation and shelter-site use in a tropical amphibian: comparing toads with physical models. Functional Ecology, 10: 193–200.
Sebens, K. P.. 1982. Competition for space - growth-rate, reproductive output, and escape in size. The American Naturalist, 120: 189–197.
Shine, R.. 2005. Life-history evolution in reptiles. Annual Review of Ecology, Evolution, and Systematics, 36: 23–46.
Shoemaker, V. H.. 1964. The effects of dehydration on electrolyte concentrations in a toad, Bufo marinus. Comparative Biochemistry and Physiology, 13: 261-271.
Sih, A.. 1997. To hide or not to hide? Refuge use in a fluctuating environment. Trends in Ecology & Evolution, 12: 375-376.
Stamps, J. & Tanaka, S.. 1981. The influence of food and water on growth rates in a tropical lizard (Anolis aeneus). Ecology, 62: 33-40.
Tieleman, B. I. & Williams, J. B.. 2002. Cutaneous and Respiratory Water Loss in Larks from Arid and Mesic Environments. Physiological and Biochemical Zoology, 75: 590-599.
Van Damme, R., Bauwens, D., Braña, F. & Verheyen, R. F.. 1992. Incubation temperature differentially affects hatching time, egg survival, and hatchling performance in the lizard podarcis muralis. Herpetologica, 48: 220-228.
Vanhooydonck, B., Van, D. R. & Aerts, P.. 2000. Ecomorphological correlates of habitat partitioning in Corsican lacertid lizards. Functional Ecology, 14: 358-368.
Vitt, L. J., Van Loben Sels, R. C. & Ohmart, R. D.. 1981. Ecological relationships among arboreal desert lizards. Ecology, 62: 398-410.
Waldschm, S. R. & Porter, W. P.. 1987. A model and experimental test of the effect of body temperature and wind speed on ocular water loss in the lizard Uta Stansburiana. Physiological Zoology, 60: 678-686.
Warburg, M. R. & Degani, G.. 1979. Evaporative water loss and uptake in juvenile and adult Salamandra Salakmndra (L.) (Amphibia: Urodela). Comparative Biochemistry and Physiology Part A: Physiology, 62: 1071-1075.
Wiens, J. W.. 1989. Spatial scaling in ecology. Functional Ecology, 3: 385-397.
Williams, J. B.. 1996. A phylogenetic perspective of evaporative water loss in birds. The Auk, 113: 457-472.
Williams, J. B., Muñoz-Garcia, A., Ostrowski, S. & Tieleman, B. I.. 2004. A phylogenetic analysis of basal metabolism, total evaporative water loss, and life-history among foxes from desert and mesic regions. Journal of Comparative Physiology, B 174: 29–39.
Xu, X. F. & Ji, X.. 2006. Ontogenetic shifts in thermal tolerance, selected body temperature and thermal dependence of food assimilation and locomotor performance in a lacertid lizard, Eremias brenchleyi. Comparative Biochemistry and Physiology, Part A, 143: 118–124.
Zucker, A.. 1980. Procedural and anatomical consideration of the determination of cutaneous water loss in Squamate reptiles. Copeia, 1980: 425–439.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔