跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/15 04:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王鈴鈞
研究生(外文):Ling-Jyun Wang
論文名稱:氧化鎂與氧化釩混合粉末 之雷射燒結機制研究
論文名稱(外文):Study of Laser-Heating Effect on the Structure Formation of MgO/V2O5 Mixed Powder
指導教授:賈至達
指導教授(外文):Chih-Ta Chia
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:105
中文關鍵詞:氧化鎂/氧化釩雷射加熱拉曼光譜相變焦釩酸鎂
外文關鍵詞:MgO/V2O5Laser heatingRaman SpectraPhase transitionMg2V2O7
相關次數:
  • 被引用被引用:2
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本文研究利用拉曼光譜觀察雷射光照射MgO+ V2O5不同比例混合粉末樣品,此粉末樣品預先經攝氏400度加熱三小時鍛燒處理,欲探討樣品經雷射照射後產生MgV2O6與Mg2V2O7結構的相變過程與相變機制。由高斯型態雷射光照射樣品所致的相變結果與能量分佈關係連結,可以得到樣品相變程度大致與高斯能量分佈成正相關。再經由X光吸收光譜與螢光激發光譜輔助確認混合粉末樣品的缺陷存在,與缺陷所導致的發光位置後,以514.5nm與532nm雷射為光源,以不同能量照射於MgO+ V2O5不同比例混合粉末,再由雷射照射後新結構生成的結果推論,導致樣品相變的能量來自於光子與電子之間的交互作用。如此一來,結合X光吸收光譜與螢光光譜,我們可以建立一個能量轉換的可能模型。
另外藉由雷射連續照射樣品同時量測所得的高溫態拉曼光譜,可以得到樣品在相變過程的結構變化訊息。X光吸收光譜也提供了樣品結構對稱性高低的資訊,搭配群論分析結果,可以解釋高溫態光譜中聲子的變化,進而推測樣品新結構形成的可能方式。
In this research, our samples were calcined ( 400 oC, 3 hours) mixtures of MgO and V2O5 powders in different proportions. We irradiated our sample powders with laser beams, and samples that heated by laser were examined by Raman spectroscopy to determine the crystalline structure. Controlling the laser heating time and power, and heated powder samples formed similar crystal as found in conventional hearting. This study can resolve the process and mechanism of MgV2O6 and Mg2V2O7 crystalline formation.
When we treated the samples with Gaussian beams, we found that there is a positive correlation between the degree of phase transition and Gaussian energy distribution. Using 514.5nm and 532nm laser as irradiating light and controlled the laser power, the heating result we analyze from Raman spectra told us the energy cause crystalline were originated from photons. Plus X-ray absorption spectrum(XAS) and Photoluminescence(PL) result, we could build a very possible model of energy transfer for laser heating.
Furthermore, we could get the continuous information of phase transition by heating our samples uninterruptly and recording Raman spectra in the same time. There spectra showed us the high temperature messages of our sample, and the change of phonon vibration during the heating process. Because of the changes of phonon vibration reflect the structure change, we could ratiocination the way of our sample crystalline with the help of group theory analysis and X-ray absorption spectrum.
中文摘要 I
Abstract II
總目錄 III
圖目錄 V
表目錄 X
Chapter 1 序論 1
1.1 序論 1
1.1.1 LTCC的簡介與應用 1
1.1.2 樣品來源與介紹 3
1.2 高溫爐與雷射加熱(Laser Heating)簡介 8
1.3 文獻回顧 9
1.3.1 五氧化二釩(V2O5)的結構 9
1.3.2 V2O5的能隙、螢光光譜與氧缺陷結構 10
1.3.3 氧化鎂的結構與光學性質 13
1.4 研究動機與目的 14
1.5 參考資料 15
Chapter 2 樣品準備 18
2.1 粉末樣品製備 18
2.2 參考資料 20
Chapter 3 X光吸收光譜實驗與分析 21
3.1 X光吸收光譜簡介 21
3.1.1 X光吸收近邊緣結構(XANES)原理 23
3.1.2 延伸X光吸收精細結構(EXFAS)原理 26
3.2 X光吸收光譜數據處理 29
3.3 Near edge圖譜分析研究 30
3.3.1 價數與缺陷結構關聯分析 30
3.3.2 吸收近邊緣結構與晶體結構關聯分析 33
3.4 延伸X光吸收精細結構光譜研究 38
3.5 結論 39
3.6 參考資料 40
Chapter 4 雷射加熱實驗與準備工作 41
4.1 欲加熱樣品之控制條件 41
4.2 雷射光束空間能量分佈(Laser profile)測量 41
4.2.1 雷射光束測量原理 41
4.2.2 刀口測量法(Knife-edge) 原理與數據處理 43
4.2.3 雷射光束測量結果 45
4.3 樣品的螢光光譜量測 47
4.3.1 螢光光譜簡介 47
4.3.2 光激螢光的實驗裝置 48
4.3.3 樣品螢光光譜量測結果 50
4.4 結論 53
4.5 參考資料 53
Chapter 5 拉曼散射光譜原理與實驗分析 54
5.1 拉曼散射簡介 54
5.2 拉曼光譜實驗裝置與實驗方法介紹 54
5.3 拉曼散射光譜數據處理 56
5.4 樣品群論分析 57
5.5 拉曼散射光譜研究 63
5.5.1 拉曼光譜關聯雷射加熱能量與成相結果 63
5.5.2 不同波長、不同加熱功率之高溫態拉曼光譜研究 67
5.5.3 連續降能量過程之高溫態拉曼研究 73
5.6 結論 90
5.7 參考資料 90
Chapter 6 全文總結 91
6.1 全文總結 91
6.2 參考資料 92
Appendix 93
A-1 2MgO+ V2O5混合粉末樣品粒徑大小。 93
A-2 X光吸收光譜數據處理相關資料。 94
A-2-1 X光吸收近邊緣結構擬合圖 94
A-2-2 X光吸收近邊緣前峰與局域結構的關係。資料來源:NSRRC。 95
A-2-3 延伸X光吸收精細結構光譜晶體座標。 96
A-2-4 延伸X光吸收精細結構光譜擬合圖。 97
A-3 雷射光束能量分佈數據處理所使用的常態分佈數值對照表。 99
A-4 不同雷射能量照射經過400oC鍛燒三小時的MgO混合V2O5粉末樣品的成相比例分析擬合圖。 100
A-4-1 加熱光源波長514.5nm以不同功率加熱樣品各功率擬合結果。 100
A-4-2 加熱光源波長514.5nm以不同功率加熱樣品各功率擬合結果。 103

01. 盧慶儒。被動元件產品及技術發展趨勢:低溫共燒多層陶瓷(Multilayer LTCC)技術特點與應用。DigiTimes.com. Availiable at:
[Accessed 20101017].
02. Yang-Li-Qun, Horng-Tzyy-Sheng, “Design and modeling of embedded inductors and capacitors in LTCC Technology.” (2002).
03. 楊明。低溫共燒產業簡介。Availiable at:
[Accessed 20101018].
04. Mi-Ri Joung, Jin-Seong Kim, Myung-Eun Song, and Sahn Nahm, “Formation and Microwave Dielectric Properties of the Mg2V2O7 Ceramics”, J. Am. Ceram. Soc., 1–4 (2009).
05. Y. Guo, H. Ohsato, and K. I. Kakimoto, ‘‘Characterization and Dielectric Behavior of Willemite and TiO2-Doped Willemite Ceramics at Millimeter-Wave Frequency,’’ J. Eur. Ceram. Soc., 26, 1827–30 (2006).
06. H. Ohsato, T. Tsunooka, M. Ando, Y. Ohishi, Y. Miyauchi, and K. Kakimoto, ‘‘Millimeter-Wave Dielectric Ceramics of Alumina and Forsterite with High Quality Factor and Low Dielectric Constant,’’ J. Korean Ceram. Soc., 40, 350–3(2003).
07. H. Ohsato, T. Tsunooka, A. Kan, Y. Ohishi, Y. Miyauchi, Y. Tohdo, T. Okawa, K. Kakimoto, and H. Ogawa, ‘‘Microwave-Millimeterwave Dielectric Materials,’’ Key Eng. Mater., 269, 195–8 (2004).
08. H. Ogawa, A. Kan, S. Ishihara, and Y. Higashida, ‘‘Crystal Structure of Corundum Type Mg4(Nb2_xTax)O9 Microwave Dielectric Ceramics with Low Dielectric Loss,’’ J. Eur. Ceram. Soc., 23, 2485–8 (2004).
09. T. Tsunooka, T. Sugiyama, H. Ohsato, K. Kakimoto, M. Andou, Y. Higashida, and H. Sugiura, ‘‘Development of Forsterite with High Q and Zero Temperature Coefficient tf for Millimeterwave Dielectric Ceramics,’’ Key Eng. Mater., 269, 199–202 (2004).
010. M. E. Song, J. S. Kim,M. R. Joung, S. Nahm, Y. S. Kim, J. H. Paik, and B. H. Choi, ‘‘Synthesis and Microwave Dielectric Properties of MgSiO3 Ceramics,’’ J. Am. Ceram. Soc., 91 [8] 2747–50 (2008).
011. J. C. Kim, M. H. Kim, J. B. Lim, S. Nahm, J. H. Paik, and J. H. Kim, ‘‘Synthesis and Microwave Dielectric Properties of Re3Ga5O12 (Re: Nd, Sm, Eu, Dy, Yb, and Y) Ceramics,’’ J. Am. Ceram. Soc., 90, 641–4 (2007).
012. M. K. Yurdakoc, R. Haaffner, D. Hoenicke,”Characterization of V2O5/MgO catalysts”, Materials Chemistry and Physics 44, p.273-276, 1996.
013. Guido Busca, et al., ”Spectroscopic Characterization of Magnesium Vanadate Catalysts”, J. CHEM. SOC. FARADAY TRANS., p.1161-1170, 90(8), 1994.
014. M. Jin, Z. M. Cheng, “Oxidative Dehydrogenation of Cyclohexane to Cyclohexene over Mg-V-O Catalysts” , Catal Lett, 131:266–278(2009).
015. D.Y. Tzou, K.S. Chiu, “Temperature-dependent thermal lagging in ultrafast laser heating”, Int. J. Heat Mass Tranfer., 44, 1725-1734 (2001).
016. B.S. Yilbas, “Laser heating process and experimental validation”, Int. J. Heat Mass Tranfer., Vol. 40, No. 5, 1131-1143 (1997).
017. T. Laude, Y. Matsui, “Long rope of boron nitride nanotubes grown by a continuous laser heating”, App. Phy. L., Vol. 76, No. 22 (2000) .
018. H.K. Kung, “In Transition Metal Oxides: Surface Chemistry and Catalysis, Studies in Surface Science and Catalysis”, Vol. 45, ed. by B. Delmon, J.T. Yates, Elsevier, Amsterdam (1989).
019. V.E. Henrich, P.A. Cox: The Surface Science of Metal Oxides (University Press, Cambridge (1994).
020. C.N.R. Rao, B. Raven: Transition Metal Oxides (VCH Press, New York 1995)
021. B. Grzybowska-Swierkosz, “Active centres on vanadia-based catalysts for selective oxidation of hydrocarbons”, Appl. Catal. A, 157, 1 (1997) and references there in.
022. E.E. Chain, “Optical properties of vanadium dioxide and vanadium pentoxide thin films”, Appl. Opt. 30, 2782 (1991) and references therein
023. D.W. Murphy, P.A. Christian, “Solid state electrodes for high energy batteries”, Science, 205, 651 (1979)
024. K. Hermann, A. Chakrabarti, R. Druzinic, M. Witko, “Ab-initio density functional theory studies of hydrogen absorption at the V2O5(010) surface”, Phys. Stat. Sol. A173: 195–208(1999).
025. R. B. Darling and S. Iwanaga, “Structure, properties, and MEMS and microelectronic applications of vanadium oxides” Sadhana, Vol. 34, Part 4, pp. 531–542(2009).
026. Moon Young Shin et al, “Selective oxidation of H2S to elemental sulfur over VOx/SiO2 and V2O5 catalysts”, Applied Catalysis A: General, 211 213-225(2001).
027. C. Diaz-Guerra, J. Piqueras, “Thermal Deposition Growth and Luminescence Properties of Single Crystalline V2O5 Elongated Nanostructures”, Crystal Growth and Design, Vol. 8, No. 3, 1031-1034(2008).
028. J. Bullot, P. Cordier, O. Gallais and M. Gauthier, “Thin Layer Deposited From V2O5 Gels”, Journal of Non-Crystalline Solids 68, p.135-146(1984).
029. M. Benmoussa, E. Ibnouelghazi, A. Bennouna, et al. “ Structural, Electrical and Optical-Properties of Sputtered Vanadium Pentoxide Thin-Film ”, Thin Solid Film, Vol. 265, 22-28(1995).
030. Yu-Quan Wang, Zheng-cao LI, Zheng-Jun Zhang.”Preparation of V2O5 Thin Film and its Optical Characteristics”, Mater, Sci. China, 3(1): 44-47(2009).
031. Shigeru Nishio, Masato Kakihana. “Evidence for Visible Light Photochromism of V2O5”, Chem. Master, 14, 3730-3733(2002).
032. Peter D. Johnson, “Some Optical Properties of MgO in the Vacuum Ultraviolet”, Physical Review, p845-846 (1954).
033. Rodney A.J. Borg, “Diffuse Reflectance Spectra of Energetic Material”, DSTO Aeronautical and Maritime Research Lab., 1994.
01. Mi-Ri Joung, Jin-Seong Kim, Myung-Eun Song, and Sahn Nahm, “Formation and Microwave Dielectric Properties of the Mg2V2O7 Ceramics”, J. Am. Ceram. Soc., 1–4 (2009).

01. Joachim Stohr, “NEXAFS Spectroscopy” , Springer-Verlag (1991).
02. Boon K. Teo, “EXFAS, Basic Principle and Data Analysis”, Springer-Verlag (1986) .
03. D. C. Koningsberger, and R. Prins, “X-ray absorption principles, applications, techniques of EXAFS, SEXAFS and XANES”, A Wiley-Interscience Publication Vol. 92 (1988).
04. A. Bianconi, L. Incoccia and S. Stipcich, “EXFAS and NEAR edge Structure”, Springer-Verlay (1983).
05. Francois Farges, Gordon E. Brown, Jr. and J. J. Rehr, “Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: Comparison between theory and experiment” Phys Rev. B, vol. 56, No. 4. (1809)
06. Harry J. Lipkin, “Phase uncertainty and loss of interference in a simple model for mesoscopic Aharonov-Bohm experiments”, Phys. Rev. A, 1990, 42, 49–54 (1990).
07. Stern, Edward A., “Theory of the Extended X-ray-Absorption Fine Structure”, Phys. Rev. B, 10, 3027-3037 (1974).
08. M. Newville, B. Ravel, D. Haskel, J. J. Rehr, E. A. Stern, and Y. Yacoby, “Analysis of multiple-scattering XAFS data using theoretical standards”, Physica B,Vol. 208-209, 154-156 (1995).
09. B. Ravel, “A practical introduction to multiple scattering theory”, J. Alloys Compd., 401, 118-126 (2005).
010. J. Wong, F. W. Lytle, R. P. Messmer and D. H. Maylotte, “K-edge absorption spectra of selected vanadium compounds”, Phys. Rev. B, Vol.30, No. 10, p5596-5610 (1984).
011. O. Sipr at el., “Geometric and Electronic Structure Effects in Polarized V K-edge Absorption Near-Edge Structure Spectra of V2O5”, Physics Review B, Vol. 60, No. 20, p14 115- 14 127(1999).
012. Guido Busca and Gabriele Ricchiardi, “Spectroscopic Characterization of Magnesium Vanadate Catalysts”, J. CHEM. SOC. FARADAY TRANS., 90(8), p.1161-1170 (1994).
013. R. Gopal, and C. Calvo, “Crystal Structure of Magnesium Divanadate”, Acta. Cryst., B30, p.2491-2493(1974).

01. Gupta and Bhargava, “An Experiment with Guassian Laser Beam”, Am. J. Phys., 56.563(1998).
02. H. Kogelnik and T.Li, ”Laser Beams and Resonators” Applied Optics, Vol. 5, No.10, p.1550-1566 (1966).
03. Bin Yan et al, “Single-Crystalline V2O5 Ultralong Nanoribbon Waveguides”, Adv. Mater., 21, 2436–2440(2009).
04. Wang Y Q, Li Z C, Sheng X, et al. Synthesis and optical propertiesof V2O5 nanorods. The Journal of Chemical Physics, 126(16):164701( 2007).
05. A. Remon and J. A. Garcia, “Red Luminescene from Deformed MgO Crystals”, J. Phys. Chem. Solids, Vol. 47, No.6, p.533-580 (1986).
06. Sibley W. A., Kolopus J. L. and Mallard W. C.,” A Study of the Effect of Deformation on the ESR, Luminescence, and Absorption of MgO Single Crystals” Phys. Stat. Sol. 31, 223 (1969).
07. V. D. Rodrigue et al., “Thermoluminescence of Low-Temperature X-Irradiated MgO and Mg0:Li Single Crystals”, Phys. Stat. Sol. (a), 76, 577 (1983).
08. Y Wang et. al., “Low temperature growth of vanadium pentoxide nanomaterials by chemical vapour deposition using VO(acac)2 as precursor”, J. Phys. D: Appl. Phys., 43, 185102(2010).

01. G. Lucazeau, L. Avello, “Raman spectroscopy in solid state physics and materical sciene. Theory. Techniques and applications”, Analusis, 23, 301-311 (1995).
02. Clauws P, Broeckx J, and Vennik J.,"Lattice Vibrations of V2O5", Phys. Status Solidi B, 131, p.459-473(1985).
03. Bo Zhou and Deyan He, "Raman spectrum of vanadium pentoxide from density-functional perturbation theory", J. Raman Spectrosc., 39, p.1475–1481 (2008).
04. Franklin D.et al., "Determlnation of Vanadium-Oxygen Bond Distances and Bond Orders by Raman Spectroscopy", J. Phys. Chem., 95, p.5031-5041(1991).
05. M. K. Yurdakoc, R. Haaffner, D. Hoenicke,”Characterization of V2O5/MgO catalysts”, Materials Chemistry and Physics 44, p.273-276, 1996.
06. Guido Busca, et al., ”Spectroscopic Characterization of Magnesium Vanadate Catalysts”, J. CHEM. SOC. FARADAY TRANS., p.1161-1170, 90(8), 1994.

1. Se-Hee Lee et al., “Microstructure study of amorphous vanadium oxide thin films using raman spectroscopy”, Journal of applied Phys., Vol. 92, No. 4, p.1893-1897.
2. P. Balog et al., “V2O5 phase diagram revisited at high pressures and high temperatures”, Journal of Alloys and Compounds, 429, p. 87–98(2007).
3. Andrzej Grzechnik, “Local Structures in High Pressure Phases of V2O5”, Chem. Mater., 10, 2505-2509(1998).
4. I. Loa et al., “Vanadium oxides V2O5 and NaV2O5 under high pressures: Structural, vibrational, and electronic properties”, Journal of Alloys and Compounds, 317–318, p.103–108(2001).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top